Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A detailed analysis of the (35)Cl/(37)Cl isotope effects observed in the 19.11 MHz (103)Rh NMR resonances of [RhCl(n)(H(2)O)(6-n)](3-n) complexes (n=3-6) in acidic solution at 292.1K, shows that the 'fine structure' of each (103)Rh resonance can be understood in terms of the unique isotopologue and in certain instances the isotopomer distribution in each complex. These (35)Cl/(37)Cl isotope effects in the (103)Rh NMR resonance of the [Rh(35/37)Cl(6)](3-) species manifest only as a result of the statistically expected (35)Cl/(37)Cl isotopologues, whereas for the aquated species such as for example [Rh(35/37)Cl(5)(H(2)O)](2-), cis-[Rh(35/37)Cl(4)(H(2)O)(2)](-) as well as the mer-[Rh(35/37)Cl(3)(H(2)O)(3)] complexes, additional fine-structure due to the various possible isotopomers within each class of isotopologues, is visible. Of interest is the possibility of the direct identification of stereoisomers cis-[RhCl(4)(H(2)O)(2)](-), trans-[RhCl(4)(H(2)O)(2)](-), fac-[RhCl(3)(H(2)O)(3)] and mer-[RhCl(3)(H(2)O)(3)] based on the (103)Rh NMR line shape, other than on the basis of their very similar δ((103)Rh) chemical shift. The (103)Rh NMR resonance structure thus serves as a novel and unique 'NMR-fingerprint' leading to the unambiguous assignment of [RhCl(n)(H(2)O)(6-n)](3-n) complexes (n=3-6), without reliance on accurate δ((103)Rh) chemical shifts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2012.02.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!