Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The microstructural evolutions of precipitates formed in a Cu75-Fe5-Ni20 alloy on isothermal annealing at 873 K and 1073 K have been investigated by means of transmission electron microscopy (TEM). Nano-scale magnetic particles were formed randomly in the Cu-rich matrix after receiving a short annealing due to phase decomposition in the alloy. With increasing the isothermal annealing time, however, the striking features that two or more nano-scale particles with a cubic shape and a rod shape were aligned linearly along (100) directions were observed on isothermal annealing at 873 K and 1073 K, respectively. To investigate electro-magnetic properties of precipitates in a Cu-Fe-Ni alloy, the superconducting quantum interference device (SQUID) magnetometer and physical property measurement system (PPMS) were also complemented. The present study revealed significant influences that the magnetic properties of the specimens were closely related to the microstructures in the Cu-Fe-Ni alloy, which microstructures significantly depend on the isothermal annealing temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.4664 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!