TiO2 nanotubes were formed on Ti electrochemically by the application of anodic current in 1 M H3PO4 + 0.3 M HF solution in a glass and Teflon bath. The TiO2 nanotubes could be partly grown in the glass bath while a uniform growth of TiO2 nanotubes was observed over the whole surface in the Teflon bath. The TiO2 nanotubes fabricated in the glass bath broke off readily during ultrasonic cleaning in distilled water while the TiO2 nanotubes formed in the Teflon bath was not damaged by the ultrasonic cleaning up to 5 minutes. The ultrasonic cleaning could remove the surface residuals which are obtained inevitably if TiO2 nanotubes are fabricated in aqueous solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2012.4604DOI Listing

Publication Analysis

Top Keywords

tio2 nanotubes
28
teflon bath
12
ultrasonic cleaning
12
nanotubes formed
8
bath tio2
8
glass bath
8
nanotubes fabricated
8
tio2
7
nanotubes
7
bath
6

Similar Publications

The current work outlines the preparation of a TiO nanotube (NT) layer electrochemically formed on the surface of a clinically-relevant titanium alloy anodisation. This NT layer was subsequently modified alternating current electrodeposition to incorporate copper micro- and nanoparticles on top of and within the NTs. Physical characterisation of the NT layer and the copper-incorporated NTs was carried out through analysis of the surface morphology, elemental composition, crystallinity, and stability SEM, EDX, XRD, and ICP-OES, respectively.

View Article and Find Full Text PDF

We present a novel approach for enhancing photocatalytic efficiency by developing polyaniline (PANI) and polyindole (PIN)-coated TiO nanotubes (TNT) through a combination of chemical oxidation and hydrothermal processes. The PANI-PIN coating was systematically applied to both the internal and external surfaces of the nanotubes to enhance the photocatalytic active sites and optimize pollutant adsorption. The dual-coated structure enhances the interaction with pollutants, facilitating a more efficient degradation of 4-nitrophenol (4-NP) when exposed to visible light.

View Article and Find Full Text PDF

Super hydrophilic and super oleophobic carbon nanotube/TiO composite membranes for efficient separation of algal-derived oil/water emulsions.

Colloids Surf B Biointerfaces

December 2024

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes.

View Article and Find Full Text PDF

The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO) and vanadium pentoxide (VO) on osteoblastic MG-63 cells grown on TiO nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study.

View Article and Find Full Text PDF

The growing modern industry has promoted the development of gas sensors for environmental monitoring and safety checks. However, the traditional chemical resistance gas sensor still has some disadvantages such as high power consumption and limited detection, mainly due to the lack of charge transfer ability of sensing materials. In this paper, an ordered UV-activated gas sensor with mesoporous ZnO/TiO nanotube composite was prepared by precisely controlling the growth of ZnO on the inner wall of TiO nanotube.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!