Utilization of brewery wastewater for culturing yeast cells for use in river water remediation.

Environ Technol

School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.

Published: June 2012

Successful in situ bio-augmentation of contaminated river water involves reducing the cost of the bio-agent. In this study, brewery wastewater was used to culture yeast cells for degrading the COD(Cr) from a contaminated river. The results showed that 15 g/L of yeast cells could be achieved after being cultured in the autoclaved brewery wastewater with 5 mL/L of saccharified starch and 9 g/L of corn steep liquor. The COD(Cr) removal efficiency was increased from 22% to 33% when the cells were cultured using the mentioned method. Based on the market price of materials used in this method, the cost of the medium for remediating 1 m3 of river water was 0.0076 US dollars. If the additional cost of field implementation is included, the total cost is less than 0.016 US dollars for treating 1 m3 of river water. The final cost was dependent on the size of remediation: the larger the scale, the lower the cost. By this method, the nutrient in the brewery wastewater was reused, the cost of brewery wastewater treatment was saved and the cost of the remediation using bio-augmentation was reduced. Hence, it is suggested that using brewery wastewater to culture a bio-agent for bio-augmentation is a cost-effective method.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2011.586058DOI Listing

Publication Analysis

Top Keywords

brewery wastewater
24
river water
16
yeast cells
12
contaminated river
8
cost
8
wastewater culture
8
wastewater
6
river
5
brewery
5
utilization brewery
4

Similar Publications

Untreated wastewater from the brewing industry poses significant environmental risks due to its high organic content. Therefore, this study evaluates the wastewater treatment system at Heineken Brewery in Addis Ababa, Ethiopia. Key parameters analyzed include COD, BOD₅, TSS, pH, ammonia (NH₃), total nitrogen (TN), total phosphorus (TP), electrical conductivity (EC), temperature, turbidity, and volatile fatty acids (VFA).

View Article and Find Full Text PDF

Wastewater from human activities, particularly from brewery industries, is a significant source of pollution. Large volumes of biodegradable and non-biodegradable substances found in brewery effluent make them suitable for natural coagulant-assisted electrocoagulation. The treatment options available today are highly harmful and not economical.

View Article and Find Full Text PDF

The use of brewery waste for the removal of pollutants such as chromium has rarely been studied. In the present work, the removal of hexavalent chromium (Cr(VI)) from aqueous solutions was evaluated by brewer's spent grain (BSG), brewing sewage sludge (BSS), and their mixture (MIX), which were obtained from the Bedele Brewery Share Company, Ethiopia. BSG with acid and heat treatment at 600 °C was selected during the preliminary screening experiments and further characterized via FTIR, XRD, and SEM.

View Article and Find Full Text PDF

Enrichment of Methanothrix species via riboflavin-loaded granular activated carbon in anaerobic digestion of high-concentration brewery wastewater amidst continuous inoculation of Methanosarcina barkeri.

Water Res

January 2025

Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China. Electronic address:

Effective treatment of high-concentration brewery wastewater through anaerobic digestion (AD) has always been a challenging issue. Enhancing direct interspecies electron transfer (DIET) was demonstrated to increase methane production during AD under high organic loading rate (OLR). Herein, the feasibility of enhancing DIET with the addition of riboflavin-loaded granular activated carbon (RF-GAC) as well as co-addition with Methanosarcina barkeri (Rf-GAC+M.

View Article and Find Full Text PDF

Emerging organic compounds in surface and groundwater reflect the urban dynamics in sub-Saharan cities.

Sci Total Environ

December 2024

Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP52, 20250 Corte, France; CNRS, UMR 6134 SPE, BP52, 20250 Corte, France. Electronic address:

Rapid and uncontrolled urbanization in sub-Saharan Africa has led to an increased production and expansion of synthetic chemicals, resulting in significant pollution of the aquatic environments, particularly by Emerging Organic Contaminants (EOCs). Due to the low income of the population in this region, there is often a lack of control over water and fishery resources prior to consumption. Therefore, the current study aims to use EOCs as markers of water resource quality degradation, and to assess the potential environmental risk of these compounds on some aquatic organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!