Isoxazoline γ-lactams are prepared starting from the regioisomeric cycloadducts of benzonitrile oxide to the N-alkyl 2-azanorbornenes taking advantage of the efficient catalytic oxidation by RuO(4). The reduction of the amide groups is easily conducted in the presence of LiAlH(4) under mild conditions, which allowed for the chemoselective reduction of the amide moiety followed by ring opening to afford the desired conformationally locked isoxazoline-carbocyclic aminols, as valuable intermediates for nucleoside synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354679 | PMC |
http://dx.doi.org/10.1100/2012/643647 | DOI Listing |
Nat Commun
January 2025
Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands.
Secondary amines are vital functional groups in pharmaceuticals, agrochemicals, and natural products, necessitating efficient synthetic methods. Traditional approaches, including N-monoalkylation and reductive amination, suffer from limitations such as poor chemoselectivity and complexity. Herein, we present a streamlined deoxygenative photochemical alkylation of secondary amides, enabling the efficient synthesis of α-branched secondary amines.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada.
This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = CMe ) - a well-studied family of organometallic complex - as models. More precisely, we describe the general reactivity of [(Cp*-BR)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO. Control experiments underscore the critical nature of borane incorporation for transforming CO to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H].
View Article and Find Full Text PDFMolecules
December 2024
Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
In this study, an iridium-catalyzed selective 1,4-reduction of α,β-unsaturated carbonyl compounds is realized, with water as a solvent and formic acid as a hydride donor. The new efficient iridium catalyst features a 2-(4,5-dihydroimidazol-2-yl)quinoline ligand. The chemoselectivity and catalyst efficiency are highly dependent on the electronic and steric properties of the substrates.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
An organophotocatalyzed approach for the chemoselective dealkylation of phenols is developed. This method demonstrates exceptional selectivity toward the cleavage of phenolic ethers over equivalent aliphatic ethers and alkyl benzoates, presenting a broad range of functional group sustainability. This strategy also enables selective debenzylation of phenols in the presence of reduction-sensitive functional groups.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France.
Hydrogels with antibacterial activities have the potential for many biomedical applications, such as wound healing, because of their capacity to maintain a moist environment and prevent infections. In this work, an ultrasound-induced supramolecular hydrogel consisting of easily accessible reducing-end-free glucosaminylbarbiturate-based hydrogelators that serve the fabrication of silver nanoparticles (AgNPs), excluding the addition of any external reducing or stabilizing agents, has been developed. The innovative synthetic approach relied on the use of -disubstituted barbituric acid derivatives as a versatile chemical platform that site-selectively reacted with the amino function of glucosamine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!