Fiber reinforced composite loop space maintainer: An alternative to the conventional band and loop.

Contemp Clin Dent

Department of Pedodontics and Preventive Dentistry, K. D. Dental College and Hospital, Delhi N. H. #2, Mathura, Uttar Pradesh, India.

Published: April 2012

The stainless steel band and loop appliance is the most commonly used fixed space maintainer in pediatric dentistry. But there are several disadvantages with this appliance such as the need for a cast or a working model, decalcification of the abutment tooth, loosening because of breakage or dissolution of the luting agent, tendency to get embedded in the soft tissue and the possibility of metal allergy. The purpose of this article is to present a simple, laboratory design of a "Fiber Reinforced Composite" (FRC) loop space maintainer and discuss the advantages over the traditional band and loop space maintainers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354803PMC
http://dx.doi.org/10.4103/0976-237X.95099DOI Listing

Publication Analysis

Top Keywords

loop space
12
space maintainer
12
band loop
12
loop
5
fiber reinforced
4
reinforced composite
4
composite loop
4
space
4
maintainer alternative
4
alternative conventional
4

Similar Publications

Commercial 3D zinc foam anodes with high deposition space and ion permeation have shown great potential in aqueous ion batteries. However, the local accumulated stress from its high-curvature surface exacerbates the Zn dendrite issue, leading to poor reversibility. Herein, we have employed zincophilic N-doped carbon@Sn composites (N-C@Sn) as nano-fillings to effectively release the local stress of high curvature surface of 3D Zn foams toward dendrite-free anode in aqueous zinc ion battery (AZIB).

View Article and Find Full Text PDF

To achieve rapid and stable detumbling of a space noncooperative satellite, an adaptive variable admittance control method for the manipulator is proposed and verified through simulation study and the ground experiment. The control block diagram of the proposed method is presented, and the adaptive variable admittance compliant detumbling control model is established. The proposed controller includes the fixed admittance controller in manipulator task space, the adaptive pose compensator for the grasping point on docking ring, and the damping adaptive regulator based on manipulator joint angular velocity, and the stability is proven by the Lyapunov method.

View Article and Find Full Text PDF

Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.

View Article and Find Full Text PDF

Proteins have proven to be useful agents in a variety of fields, from serving as potent therapeutics to enabling complex catalysis for chemical manufacture. However, they remain difficult to design and are instead typically selected for using extensive screens or directed evolution. Recent developments in protein large language models have enabled fast generation of diverse protein sequences in unexplored regions of protein space predicted to fold into varied structures, bind relevant targets, and catalyze novel reactions.

View Article and Find Full Text PDF

From Sunlight to Solutions: Closing the Loop on Halide Perovskites.

ACS Mater Au

January 2025

Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, Knoxville, Tennessee 37996, United States.

Halide perovskites (HPs) are emerging as key materials in the fight against global warming with well recognized applications, such as photovoltaics, and emergent opportunities, such as photocatalysis for methane removal and environmental remediation. These current and emergent applications are enabled by a unique combination of high absorption coefficients, tunable band gaps, and long carrier diffusion lengths, making them highly efficient for solar energy conversion. To address the challenge of discovery and optimization of HPs in huge chemical and compositional spaces of possible candidates, this perspective discusses a comprehensive strategy for screening HPs through automated high-throughput and combinatorial synthesis techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!