The loading of cohesin onto chromatin requires the heterodimeric complex sister chromatid cohesion (Scc)2 and Scc4 (Scc2/4), which is highly conserved in all species. Here, we describe the purification of the human (h)-Scc2/4 and show that it interacts with h-cohesin and the heterodimeric Smc1-Smc3 complex but not with the Smc1 or Smc3 subunit alone. We demonstrate that both h-Scc2/4 and h-cohesin are loaded onto dsDNA containing the prereplication complex (pre-RC) generated in vitro by Xenopus high-speed soluble extracts. The addition of geminin, which blocks pre-RC formation, prevents the loading of Scc2/4 and cohesin. Xenopus extracts depleted of endogenous Scc2/4 with specific antibodies, although able to form pre-RCs, did not support cohesin loading unless supplemented with purified h-Scc2/4. The results presented here indicate that the Xenopus or h-Scc2/4 complex supports the loading of Xenopus and/or h-cohesin onto pre-RCs formed by Xenopus high-speed extracts. We show that cohesin loaded onto pre-RCs either by h-Scc2/4 and/or the Xenopus complex was dissociated from chromatin by low salt extraction, similar to cohesin loaded onto chromatin in G(1) by HeLa cells in vivo. Replication of cohesin-loaded DNA, both in vitro and in vivo, markedly increased the stability of cohesin associated with DNA. Collectively, these in vitro findings partly recapitulate the in vivo pathway by which sister chromatids are linked together, leading to cohesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386075PMC
http://dx.doi.org/10.1073/pnas.1206840109DOI Listing

Publication Analysis

Top Keywords

xenopus high-speed
8
cohesin loaded
8
cohesin
7
complex
6
xenopus
6
h-scc2/4
5
vitro
4
vitro loading
4
loading human
4
human cohesin
4

Similar Publications

DNA compaction is required for the condensation and resolution of chromosomes during mitosis, but the relative contribution of individual chromatin factors to this process is poorly understood. We developed a physiological, cell-free system using high-speed egg extracts and optical tweezers to investigate real-time mitotic chromatin fiber formation and force-induced disassembly on single DNA molecules. Compared to interphase extract, which compacted DNA by ~60%, metaphase extract reduced DNA length by over 90%, reflecting differences in whole-chromosome morphology under these two conditions.

View Article and Find Full Text PDF

has a lateral line mechanosensory system throughout its full life cycle, and a previous study on prefeeding stage tadpoles revealed that it may play a role in motor responses to both water suction and water jets. Here, we investigated the physiology of the anterior lateral line system in newly hatched tadpoles and the motor outputs induced by its activation in response to brief suction stimuli. High-speed videoing showed tadpoles tended to turn and swim away when strong suction was applied close to the head.

View Article and Find Full Text PDF

Frogs are characterized by their outstanding jumping ability, depending on the rapid extension of hindlimbs to propel their bodies into air. A typical jumping cycle could be broken into four phases: preparation, takeoff, flight, and landing. Considerable research has been performed to discuss the function of hindlimbs of frogs during takeoff phase, whereas the literature of limbs' motion in jumping between different species was limited.

View Article and Find Full Text PDF

Tadpole Craniocardiac Imaging Using Optical Coherence Tomography.

Cold Spring Harb Protoc

June 2022

Pediatric Genomics Discovery Program, Department of Pediatrics.

Optical coherence tomography (OCT) imaging can be used to visualize craniocardiac structures in the model system. OCT is analogous to ultrasound, utilizing light instead of sound to create a gray-scale image from the echo time delay of infrared light reflected from the specimen. OCT is a high-speed, cross-sectional, label-free imaging modality, which can outline dynamic in vivo morphology at resolutions approaching histological detail.

View Article and Find Full Text PDF

Cyclase-associated protein (CAP) is a conserved actin-binding protein that regulates multiple aspects of actin dynamics, including polymerization, depolymerization, filament severing, and nucleotide exchange. CAP has been isolated from different cells and tissues in an equimolar complex with actin, and previous studies have shown that a CAP-actin complex contains six molecules each of CAP and actin. Intriguingly, here, we successfully isolated a complex of Xenopus cyclase-associated protein 1 (XCAP1) with actin from oocyte extracts, which contained only four molecules each of XCAP1 and actin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!