Electronic modifications within Ru-based olefin metathesis precatalysts have provided a number of new complexes with significant differences in reactivity profiles. So far, this aspect has not been studied for neutral 16 VE allenylidenes. The first synthesis of electronically altered complexes of this type is reported. Following the classical dehydration approach (vide infra) modified propargyl alcohols were transformed to the targeted allenylidene systems in the presence of PCy₃. The catalytic performance was investigated in RCM reaction (ring closing metathesis) of benchmark substrates such as diallyltosylamide and diethyl diallylmalonate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268640PMC
http://dx.doi.org/10.3390/molecules17055177DOI Listing

Publication Analysis

Top Keywords

synthesis electronically
8
olefin metathesis
8
metathesis precatalysts
8
electronically modified
4
modified ru-based
4
ru-based neutral
4
neutral allenylidene
4
allenylidene olefin
4
precatalysts electronic
4
electronic modifications
4

Similar Publications

Importance: Understanding the interplay between diabetes risk factors and diabetes development is important to develop individual, practice, and population-level prevention strategies.

Objective: To evaluate the progression from normal and impaired fasting glucose levels to diabetes among adults.

Design, Setting, And Participants: This retrospective community-based cohort study used data from the Rochester Epidemiology Project, in Olmsted County, Minnesota, on 44 992 individuals with at least 2 fasting plasma glucose (FPG) measurements from January 1, 2005, to December 31, 2017.

View Article and Find Full Text PDF

How does goldene stack?

Mater Horiz

January 2025

Department of Applied Physics and Center for Computational Engineering and Sciences, State University of Campinas, Campinas, São Paulo, Brazil.

The recent synthesis of goldene, a 2D atomic monolayer of gold, has opened new avenues in exploring novel materials. However, the question of when multilayer goldene transitions into bulk gold remains unresolved. This study used density functional theory calculations to address this fundamental question.

View Article and Find Full Text PDF

[2Fe-2S] model compounds.

Chem Commun (Camb)

January 2025

Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.

This feature article reviews the synthesis, structural comparison, and physical properties of [2Fe-2S] model compounds, which serve as vital tools for understanding the structure and function of Fe-S clusters in biological systems. We explore various synthetic methods for constructing [2Fe-2S] cores, offering insights into their biomimetic relevance. A comprehensive analysis and comparison of Mössbauer spectroscopy data between model compounds and natural protein systems are provided, highlighting the structural and electronic parallels.

View Article and Find Full Text PDF

Fabricating Lattice-Confined Pt Single Atoms With High Electron-Deficient State for Alkali Hydrogen Evolution Under Industrial-Current Density.

Adv Mater

January 2025

State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.

The confining effect is essential to regulate the activity and stability of single-atom catalysts (SACs), but the universal fabrication of confined SACs is still a great challenge. Here, various lattice-confined Pt SACs supported by different carriers are constructed by a universal co-reduction approach. Notably, Pt single atoms confined in the lattice of Ni(OH) (Pt/Ni(OH)) with a high electron-deficient state exhibit excellent activity for basic hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

Spin State Modulation with Oxygen Vacancy Orientates C/N Intermediates for Urea Electrosynthesis of Ultrahigh Efficiency.

Adv Mater

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.

The co-electrolysis of CO and NO to synthesize urea has become an effective pathway to alternate the conventional Bosch-Meiser process, while the complexity of C-/N-containing intermediates for C-N coupling results in the urea electrosynthesis of unsatisfactory efficiency. In this work, an electronic spin state modulation maneuver with oxygen vacancies (Ov) is unveiled to effectively meliorate the oriented generation of key intermediates NH and CO for C-N coupling, furnishing urea in ultrahigh yield of 2175.47 µg mg h and Faraday efficiency of 70.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!