Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that converts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1(-/-)) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1(-/-) mice and matching Cyp7a1(+/+) controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15-18 days. A level of just 0.03% provided a CA intake of ~12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1(-/-) mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1(+/+) mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404571PMC
http://dx.doi.org/10.1152/ajpgi.00111.2012DOI Listing

Publication Analysis

Top Keywords

cyp7a1-/- mice
16
cholesterol
9
molecular physiological
8
pool size
8
cholic acid
8
intestinal cholesterol
8
cholesterol absorption
8
fecal sterol
8
cholesterol synthesis
8
fecal excretion
8

Similar Publications

Glycyrrhiza uralensis Fisch. attenuates Dioscorea bulbifera L.-induced liver injury by regulating the FXR/Nrf2-BAs-related proteins and intestinal microbiota.

J Ethnopharmacol

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang 712046, People's Republic of China. Electronic address:

Ethnopharmacological Relevance: Dioscorea bulbifera L. (DBL) was a traditional Chinese medicine commonly used to treat goitre and cancer. Nevertheless, its clinical application may lead to liver injury.

View Article and Find Full Text PDF

Baolier Capsule's Secret Weapon: Piperine Boosts Cholesterol Excretion to Combat Atherosclerosis.

Drug Des Devel Ther

January 2025

Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical University, Southern Medical University, Foshan, 528244, People's Republic of China.

Purpose: The Baolier capsule (BLEC) is a proprietary Mongolian medicine administered for treating hypercholesterolemia and atherosclerosis (AS). However, the therapeutic effects, primary bioactive ingredients, and potential mechanisms underlying hypercholesterolemia and AS remain unclear. This study aimed to investigate the pharmacological effects, principal active ingredients, and mechanisms of BLEC against hypercholesterolemia and AS.

View Article and Find Full Text PDF

Exosome-derived miR-107 targeting caveolin-1 promotes gallstone progression by regulating the hepatobiliary cholesterol secretion pathway.

Biochem Pharmacol

December 2024

Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong Province, China. Electronic address:

Cholesterol gallstone is a disease with high incidence and quality of life. This study aimed to investigate the function of exosome-derived miRNA in gallstone formation and its related molecular mechanism. Exosomes were extracted and isolated from patients with gallbladder stones and age- and gender-matched healthy controls, and exosomal miRNA expression was compared between the two groups.

View Article and Find Full Text PDF

Background: NXT629, a PPAR-alpha antagonist, exerts widespread effects in many diseases; however, its function and relevant mechanism in cholesterol gallstones (CG) remain largely unknown.

Methods: Male C57BL/6 J mice were fed a regular diet or lithogenic diet (LD), followed by treatment with intraperitoneal injection of NXT629. H&E staining was performed to analyze hepatic pathological changes, and Oil red O staining was conducted to detect lipid accumulation.

View Article and Find Full Text PDF

Maternal high-fat diet orchestrates offspring hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression.

Cell Mol Biol Lett

December 2024

Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Ave, Xicheng, Beijing, 100034, People's Republic of China.

Background: Maternal overnutrition, prevalent among women of childbearing age, significantly impacts offspring health throughout their lifetime. While DNA methylation of metabolic-related genes mediates the transmission of detrimental effects from maternal high-fat diet (HFD), its role in programming hepatic cholesterol metabolism in offspring, particularly during weaning, remains elusive.

Methods: Female C57BL/6 J mice were administered a HFD or control diet, before and during, gestation and lactation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!