A recombinant thermostable l-fucose isomerase from Dictyoglomus turgidum was purified with a specific activity of 93 U/mg by heat treatment and His-trap affinity chromatography. The native enzyme existed as a 410 kDa hexamer. The maximum activity for l-fucose isomerization was observed at pH 7.0 and 80 °C with a half-life of 5 h in the presence of 1 mM Mn(2+) that was present one molecular per monomer. The isomerization activity of the enzyme with aldose substrates was highest for l-fucose (with a k(cat) of 15,500 min(-1) and a K(m) of 72 mM), followed by d-arabinose, d-altrose, and l-galactose. The 15 putative active-site residues within 5 Å of the substrate l-fucose in the homology model were individually replaced with other amino acids. The analysis of metal-binding capacities of these alanine-substituted variants revealed that Glu349, Asp373, and His539 were metal-binding residues, and His539 was the most influential residue for metal binding. The activities of all variants at 349 and 373 positions except for a dramatically decreased k(cat) of D373A were completely abolished, suggesting that Glu349 and Asp373 were catalytic residues. Alanine substitutions at Val131, Met197, Ile199, Gln314, Ser405, Tyr451, and Asn538 resulted in substantial increases in K(m), suggesting that these amino acids are substrate-binding residues. Alanine substitutions at Arg30, Trp102, Asn404, Phe452, and Trp510 resulted in decreases in k(cat), but had little effect on K(m).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2012.05.009DOI Listing

Publication Analysis

Top Keywords

thermostable l-fucose
8
l-fucose isomerase
8
isomerase dictyoglomus
8
dictyoglomus turgidum
8
amino acids
8
glu349 asp373
8
residues alanine
8
alanine substitutions
8
l-fucose
6
molecular characterization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!