Purpose: To compare efficiency and chatter of Infiniti Ozil with and without Intelligent Phacoemulsification (IP) and the Signature Ellips with and without FX.
Setting: John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA.
Design: Experimental study.
Methods: Brunescent 2.0 mm human lens cubes were created by an instrument devised for this study. Cubes were tested (10 per test) for time of particle removal (efficiency) and for the number of times the lens particle bounced off the tip (chatter) at 300 mm Hg and 550 mm Hg, 50% and 100% power, and 50% and 100% amplitudes (amplitude for Ozil only).
Results: Of the ultrasound settings, efficiency varied from a mean of 3.3 seconds ± 1.4 (SD) to 50.4 ± 11.7 seconds and chatter from 0.0 to 52.0 ± 16.7 bounces per run. The Ozil-IP was generally more efficient than the Ozil and the Ellips FX more efficient than the Ellips. At optimized values, the Ozil-IP and Ellips-FX were similar. In general, efficiency and chatter were better at 550 mm Hg and at 50% power. The amplitude effect was complex. Efficiency closely correlated with chatter (Pearson r(2) = .31, P<.0001).
Conclusions: Objective comparison of phacoemulsification efficiency and chatter found that optimized Ozil-IP and Ellips-FX were similar in both parameters and in general, both performed better than preceding technology. The study parameters can significantly affect efficiency and chatter, which strongly correlate with each other.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcrs.2011.12.040 | DOI Listing |
Sci Rep
January 2025
School of Mechatronic Engineering, Xi'an Technological University, Xi'an, 710021, China.
Milling chatter, a form of self-excited vibration, can cause significant damage in machining and manufacturing processes. By selecting appropriate milling parameters, milling chatter can be effectively mitigated without sacrificing milling efficiency. Within the framework of the semi-discretization scheme, this paper introduces the Newton-Simpson-based predictor-corrector methods to compute milling stability lobe diagrams.
View Article and Find Full Text PDFMolecules
October 2024
Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, UK.
This study examines a new approach to hybrid neuromorphic devices by studying the impact of omeprazole-proteinoid complexes on Izhikevich neuron models. We investigate the influence of these metabolic structures on five specific patterns of neuronal firing: accommodation, chattering, triggered spiking, phasic spiking, and tonic spiking. By combining omeprazole, a proton pump inhibitor, with proteinoids, we create a unique substrate that interfaces with neuromorphic models.
View Article and Find Full Text PDFBMC Plant Biol
October 2024
Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
Sci Prog
January 2024
School of Mechanical and Aerospace Engineering, Queen's University, Belfast, UK.
Due to the advantages of high stiffness, high precision, high load capacity and large workspace, hybrid robots are applicable to drilling and milling of complicated components with large sizes, for instance car panels. However, the difficulty in establishing an exact dynamic model and external disturbances affect the high accuracy control directly, which will decrease the machining accuracy and thereby affect the machining quality and efficiency of the system. Sliding mode control is an effective approach for high-order nonlinear dynamic systems since that it is very insensitive to disturbances and parameter variations.
View Article and Find Full Text PDFSensors (Basel)
April 2024
NOCCS Laboratory, National School of Engineering of Sousse, University of Sousse, Sousse 4054, Tunisia.
This paper proposes a robust tracking control method for wheeled mobile robot (WMR) against uncertainties, including wind disturbances and slipping. Through the application of the differential flatness methodology, the under-actuated WMR model is transformed into a linear canonical form, simplifying the design of a stabilizing feedback controller. To handle uncertainties from wheel slip and wind disturbances, the proposed feedback controller uses sliding mode control (SMC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!