Heterosis is widely used in genetic crop improvement; however, the genetic basis of heterosis is incompletely understood. The use of whole-genome segregating populations poses a problem for establishing the genetic basis of heterosis, in that interactions often mask the effects of individual loci. However, introgression line (IL) populations permit the partitioning of heterosis into defined genomic regions, eliminating a major part of the genome-wide epistasis. In our previous study, based on mid-parental heterosis (HMP) value with single-point analysis, 42 heterotic loci (HLs) associated with six yield-related traits were detected in wild and cultivated rice using a set of 265 ILs of Dongxiang common wild rice (Oryza rufipogon Griff.). In this study, the genetic effects of HLs were determined as the combined effects of both additive and dominant gene actions, estimated from the performance values of testcross F1s and the dominance effects estimated from the HMP values of testcross F1s. We characterized the gene action type at each HL. Thirty-eight of the 42 HLs were over-dominant, and in the absence of epistasis, four HLs were dominant. Therefore, we favour that over-dominance is a major genetic basis of 'wild-cultivar' crosses at the single functional Mendelian locus level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0016672312000250 | DOI Listing |
Alzheimers Res Ther
January 2025
Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China.
Hearing loss is a prevalent condition with a significant impact on individuals' quality of life. However, comprehensive studies investigating the differential gene expression and regulatory mechanisms associated with hearing loss are lacking, particularly in the context of diverse patient samples. In this study, we integrated data from 10 patients across different regions, age groups, and genders, with their data retrieved from a public transcriptome database, to explore the molecular basis of hearing loss.
View Article and Find Full Text PDFGenome Biol
January 2025
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
Background: Streptomyces is a highly diverse genus known for the production of secondary or specialized metabolites with a wide range of applications in the medical and agricultural industries. Several thousand complete or nearly complete Streptomyces genome sequences are now available, affording the opportunity to deeply investigate the biosynthetic potential within these organisms and to advance natural product discovery initiatives.
Results: We perform pangenome analysis on 2371 Streptomyces genomes, including approximately 1200 complete assemblies.
BMC Genomics
January 2025
College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
Background: Chemosensory perception plays a vital role in insect survival and adaptability, driving essential behaviours such as navigation, mate identification, and food location. This sensory process is governed by diverse gene families, including odorant-binding proteins (OBPs), olfactory receptors (ORs), ionotropic receptors (IRs), chemosensory proteins (CSPs), gustatory receptors (GRs), and sensory neuron membrane proteins (SNMPs). The oriental mole cricket (Gryllotalpa orientalis Burmeister), an invasive pest with an underground, phyllophagous lifestyle, causes substantial crop damage.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
Ensuring species integrity and successful reproduction is pivotal for the survival of angiosperms. Members of Brassicaceae family employ a "lock and key" mechanism involving stigmatic (sRALFs) and pollen RALFs (pRALFs) binding to FERONIA, a Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) receptor, to establish a prezygotic hybridization barrier. In the absence of compatible pRALFs, sRALFs bind to FERONIA, inducing a lock state for pollen tube penetration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!