In Bacillus licheniformis 749/I, BlaP β-lactamase is induced by the presence of a β-lactam antibiotic outside the cell. The first step in the induction mechanism is the detection of the antibiotic by the membrane-bound penicillin receptor BlaR1 that is composed of two functional domains: a carboxy-terminal domain exposed outside the cell, which acts as a penicillin sensor, and an amino-terminal domain anchored to the cytoplasmic membrane, which works as a transducer-transmitter. The acylation of BlaR1 sensor domain by the antibiotic generates an intramolecular signal that leads to the activation of the L3 cytoplasmic loop of the transmitter by a single-point cleavage. The exact mechanism of L3 activation and the nature of the secondary cytoplasmic signal launched by the activated transmitter remain unknown. However, these two events seem to be linked to the presence of a HEXXH zinc binding motif of neutral zinc metallopeptidases. By different experimental approaches, we demonstrated that the L3 loop binds zinc ion, belongs to Gluzincin metallopeptidase superfamily and is activated by self-proteolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356374PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036400PLOS

Publication Analysis

Top Keywords

bacillus licheniformis
8
activated self-proteolysis
8
licheniformis blar1
4
blar1 loop
4
zinc
4
loop zinc
4
zinc metalloprotease
4
metalloprotease activated
4
self-proteolysis bacillus
4
licheniformis 749/i
4

Similar Publications

Culicoides oxystoma Kieffer (Diptera: Ceratopogonidae) transmits many pathogens, including seven viruses, four protozoa and one nematode. This species has a wide distribution range across northern Afro-tropical, Palearctic, Australian, Indo-Malayan realms with a broad host spectrum, including cattle, buffaloes, sheep, pigs, dogs, horses and even humans. The heterogeneous nature of Culicoides' blood-feeding patterns is well documented, but the influence of various host blood meal sources on gut bacterial composition remains scant.

View Article and Find Full Text PDF

Identification of microorganisms at different times in a bioleaching process for the recovery of gold and silver from minerals in oxide form.

Heliyon

January 2025

Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico.

In this study, gold and silver were recovered through a bioleaching process conducted at room temperature over 11 days. Native bacteria and varying ratios of mineral pulp to culture medium (20/80, 37.5/62.

View Article and Find Full Text PDF

Characterization of a novel D-sorbitol dehydrogenase from Faunimonas pinastri A52C2.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.

The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.

View Article and Find Full Text PDF

Cell-to-Cell Natural Transformation Mediated Efficient Plasmid Transfer Between Species.

Int J Mol Sci

January 2025

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Horizontal gene transfer (HGT) plays a pivotal role in bacterial evolution, shaping the genetic diversity of bacterial populations. It can occur through mechanisms such as conjugation, transduction, and natural transformation. , a model Gram-positive bacterium, serves not only as a robust system for studying HGT but also as a versatile organism with established industrial applications, such as producing industrial enzymes, antibiotics, and essential metabolites.

View Article and Find Full Text PDF

Salidroside is a phenylpropanoid glycoside with wide applications in the food, pharmaceutical, and cosmetic industries; however, the plant genus Rhodiola, the natural source of salidroside, has slow growth and limited distribution. In this study, we designed a novel six-enzyme biocatalytic cascade for the efficient production of salidroside, utilizing cost-effective bio-based L-Tyrosine as the starting material. A preliminary analysis revealed that the poor thermostability of the Bacillus licheniformis UDP-glycosyltransferase (EC 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!