Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are closely related but pathogenically distinct human retroviruses. The antisense strand of the HTLV-1 genome encodes HTLV-1 basic leucine zipper (b-ZIP) protein (HBZ), a protein that inhibits Tax-mediated viral transcription, enhances T-cell proliferation, and promotes viral persistence. Recently, an HTLV-2 antisense viral protein (APH-2) was identified. Despite its lack of a typical b-ZIP domain, APH-2, like HBZ, interacts with cyclic AMP response element binding protein (CREB) and downregulates Tax-mediated viral transcription. Here, we provide evidence that the APH-2 C-terminal LXXLL motif is important for CREB binding and Tax repression. In order to investigate the functional role of APH-2 in the HTLV-2-mediated immortalization of primary T lymphocytes in vitro and in HTLV-2 infection in vivo, we generated APH-2 mutant viruses. In cell cultures, the immortalization capacities of APH-2 mutant viruses were indistinguishable from that of wild-type HTLV-2 (wtHTLV-2), indicating that, like HBZ, APH-2 is dispensable for viral infection and cellular transformation. In vivo, rabbits inoculated with either wtHTLV-2 or APH-2 mutant viruses established a persistent infection. However, the APH-2 knockout virus displayed an increased replication rate, as measured by an increased viral antibody response and a higher proviral load. In contrast to HTLV-1 HBZ, we show that APH-2 is dispensable for the establishment of an efficient infection and persistence in a rabbit animal model. Therefore, antisense proteins of HTLV-1 and HTLV-2 have evolved different functions in vivo, and further comparative studies will provide fundamental insights into the distinct pathobiologies of these two viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421770 | PMC |
http://dx.doi.org/10.1128/JVI.00717-12 | DOI Listing |
Genetics
July 2024
Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, USA.
The final step in Notch signaling activation is the transmembrane cleavage of Notch receptor by γ secretase. Thus far, genetic and biochemical evidence indicates that four subunits are essential for γ secretase activity in vivo: presenilin (the catalytic core), APH-1, PEN-2, and APH-2/nicastrin. Although some γ secretase activity has been detected in APH-2/nicastrin-deficient mammalian cell lines, the lack of biological relevance for this activity has left the quaternary γ secretase model unchallenged.
View Article and Find Full Text PDFCurr Med Chem
July 2021
Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong.
Background: We report herein the synthesis of a novel dicationic boron dipyrromethene derivative (compound 3) which is symmetrically substituted with two trimethylammonium styryl groups.
Methods: The antibacterial photodynamic activity of compound 3 was determined against sixteen methicillin-resistant Staphylococcus aureus (MRSA) strains, including four ATCC type strains (ATCC 43300, ATCC BAA-42, ATCC BAA-43, and ATCC BAA-44), two mutant strains [AAC(6')-APH(2") and RN4220/pUL5054], and ten nonduplicate clinical strains of hospital- and community-associated MRSA. Upon light irradiation, the minimum bactericidal concentrations of compound 3 were in the range of 1.
Antimicrob Agents Chemother
July 2018
Department of Biochemistry, McGill University, Montreal, Canada
The APH(2″)-Ia aminoglycoside resistance enzyme forms the C-terminal domain of the bifunctional AAC(6')-Ie/APH(2″)-Ia enzyme and confers high-level resistance to natural 4,6-disubstituted aminoglycosides. In addition, reports have suggested that the enzyme can phosphorylate 4,5-disubstituted compounds and aminoglycosides with substitutions at the N1 position. Previously determined structures of the enzyme with bound aminoglycosides have not indicated how these noncanonical substrates may bind and be modified by the enzyme.
View Article and Find Full Text PDFPlant Mol Biol
February 2017
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
A new selectable marker gene for stable transformation of the plastid genome was developed that is similarly efficient as the aadA, and produces no background of spontaneous resistance mutants. More than 25 years after its development for Chlamydomonas and tobacco, the transformation of the chloroplast genome still represents a challenging technology that is available only in a handful of species. The vast majority of chloroplast transformation experiments conducted thus far have relied on a single selectable marker gene, the spectinomycin resistance gene aadA.
View Article and Find Full Text PDFBiochemistry
October 2016
Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States.
Aminoglycosides (AGs) are broad-spectrum antibiotics famous for their antibacterial activity against Gram-positive and Gram-negative bacteria, as well as mycobacteria. In the United States, the most prescribed AGs, including amikacin (AMK), gentamicin (GEN), and tobramycin (TOB), are vital components of the treatment for resistant bacterial infections. Arbekacin (ABK), a semisynthetic AG, is widely used for the treatment of resistant Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus in Asia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!