Magnaporthe oryzae chrysovirus 1 (MoCV1), which is associated with an impaired growth phenotype of its host fungus, harbors four major proteins: P130 (130 kDa), P70 (70 kDa), P65 (65 kDa), and P58 (58 kDa). N-terminal sequence analysis of each protein revealed that P130 was encoded by double-stranded RNA1 (dsRNA1) (open reading frame 1 [ORF1] 1,127 amino acids [aa]), P70 by dsRNA4 (ORF4; 812 aa), and P58 by dsRNA3 (ORF3; 799 aa), although the molecular masses of P58 and P70 were significantly smaller than those deduced for ORF3 and ORF4, respectively. P65 was a degraded form of P70. Full-size proteins of ORF3 (84 kDa) and ORF4 (85 kDa) were produced in Escherichia coli. Antisera against these recombinant proteins detected full-size proteins encoded by ORF3 and ORF4 in mycelia cultured for 9, 15, and 28 days, and the antisera also detected smaller degraded proteins, namely, P58, P70, and P65, in mycelia cultured for 28 days. These full-size proteins and P58 and P70 were also components of viral particles, indicating that MoCV1 particles might have at least two forms during vegetative growth of the host fungus. Expression of the ORF4 protein in Saccharomyces cerevisiae resulted in cytological changes, with a large central vacuole associated with these growth defects. MoCV1 has five dsRNA segments, as do two Fusarium graminearum viruses (FgV-ch9 and FgV2), and forms a separate clade with FgV-ch9, FgV2, Aspergillus mycovirus 1816 (AsV1816), and Agaricus bisporus virus 1 (AbV1) in the Chrysoviridae family on the basis of their RdRp protein sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421670PMC
http://dx.doi.org/10.1128/JVI.00871-12DOI Listing

Publication Analysis

Top Keywords

p58 p70
12
full-size proteins
12
magnaporthe oryzae
8
oryzae chrysovirus
8
saccharomyces cerevisiae
8
host fungus
8
orf3 orf4
8
mycelia cultured
8
cultured days
8
proteins p58
8

Similar Publications

25th Annual Computational Neuroscience Meeting: CNS-2016.

BMC Neurosci

August 2016

Institut de Neuroscienes de la Timone (INT), CNRS & Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France

Article Synopsis
  • The text includes a collection of research topics related to neural circuits, mental disorders, and computational models in neuroscience.
  • It features various studies examining the functional advantages of neural heterogeneity, propagation waves in the visual cortex, and dendritic mechanisms crucial for precise neuronal functioning.
  • The research covers a range of applications, from understanding complex brain rhythms to modeling auditory processing and investigating the effects of neural regulation on behavior.
View Article and Find Full Text PDF

O1 Regulation of genes by telomere length over long distances Jerry W. Shay O2 The microtubule destabilizer KIF2A regulates the postnatal establishment of neuronal circuits in addition to prenatal cell survival, cell migration, and axon elongation, and its loss leading to malformation of cortical development and severe epilepsy Noriko Homma, Ruyun Zhou, Muhammad Imran Naseer, Adeel G. Chaudhary, Mohammed Al-Qahtani, Nobutaka Hirokawa O3 Integration of metagenomics and metabolomics in gut microbiome research Maryam Goudarzi, Albert J.

View Article and Find Full Text PDF

Proceedings of the 3rd IPLeiria's International Health Congress : Leiria, Portugal. 6-7 May 2016.

BMC Health Serv Res

July 2016

Faculdade de Ciências do Desporto e Educação Física, Universidade de Coimbra, 3040-248 Coimbra, Portugal

Article Synopsis
  • The text discusses various research studies focusing on health topics, including health literacy in adolescents and the impact of walking programs on individuals with schizophrenia.
  • It also covers innovative medical practices, safety culture in patient care, and the psychological effects experienced by emergency crews after disasters.
  • Additionally, it highlights issues such as musculoskeletal disorders in midwives, negative childhood experiences affecting adolescent mental health, and studies on vaccination timing and assessments in elderly care.
View Article and Find Full Text PDF

The C-terminal domain of the DNA polymerase catalytic subunit regulates the primase and polymerase activities of the human DNA polymerase α-primase complex.

J Biol Chem

August 2014

From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Biochemistry and Molecular Biology, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805

The initiation of DNA synthesis during replication of the human genome is accomplished primarily by the DNA polymerase α-primase complex, which makes the RNA-DNA primers accessible to processive DNA pols. The structural information needed to understand the mechanism of regulation of this complex biochemical reaction is incomplete. The presence of two enzymes in one complex poses the question of how these two enzymes cooperate during priming of DNA synthesis.

View Article and Find Full Text PDF

Magnaporthe oryzae chrysovirus 1 (MoCV1), which is associated with an impaired growth phenotype of its host fungus, harbors four major proteins: P130 (130 kDa), P70 (70 kDa), P65 (65 kDa), and P58 (58 kDa). N-terminal sequence analysis of each protein revealed that P130 was encoded by double-stranded RNA1 (dsRNA1) (open reading frame 1 [ORF1] 1,127 amino acids [aa]), P70 by dsRNA4 (ORF4; 812 aa), and P58 by dsRNA3 (ORF3; 799 aa), although the molecular masses of P58 and P70 were significantly smaller than those deduced for ORF3 and ORF4, respectively. P65 was a degraded form of P70.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!