In order to metabolically engineer microorganisms to produce compounds of interest, it is often desirable to integrate foreign genes into the chromosome of the host. However, the consequences of these genetic alterations are not always predictable. The use of a reporter system can often assist in determining chromosomal locations for optimal expression of foreign biosynthetic genes. The method described here involves the construction and utilization of promoterless carotenoid transposons, which provides a colorimetric screen for identifying the best chromosomal integration sites for the expression of the genes of interest. The transposons (pUTmTn5::392W and pUTmTn5::392) contain the carotenoid genes required for the production of canthaxanthin and astaxanthin, respectively. Thus, when promoterless transposons insert into the host's genome, the color of the colonies will vary based on their chromosomal location. There is a correlation between the color intensity of the colonies and the expression of the carotenoid transposon. The transposon insertion site can be determined via direct chromosomal sequencing. This sequence information is used to guide the site-specific integration of biosynthetic genes and pathways of interest.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-879-5_13DOI Listing

Publication Analysis

Top Keywords

biosynthetic genes
12
construction utilization
8
chromosomal integration
8
integration sites
8
genes pathways
8
genes
6
chromosomal
5
carotenoid
4
utilization carotenoid
4
carotenoid reporter
4

Similar Publications

Effects of photobiomodulation in mitochondrial quantity, biogenesis and mitophagy-associated genes in breast cancer cells.

Lasers Med Sci

January 2025

Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.

In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA).

View Article and Find Full Text PDF

Background: T cells are involved in every stage of tumor development and significantly influence the tumor microenvironment (TME). Our objective was to assess T-cell marker gene expression profiles, develop a predictive risk model for human papilloma virus (HPV)-negative oral squamous cell carcinoma (OSCC) utilizing these genes, and examine the correlation between the risk score and the immunotherapy response.

Methods: We acquired scRNA-seq data for HPV-negative OSCC from the GEO datasets.

View Article and Find Full Text PDF

Recent empirical investigations reinforce the understanding of a profound interconnection between metabolic functions and Obstructive Sleep Apnea-hypopnea Syndrome (OSAHS). This study identifies distinctive miRNA signatures in OSAHS with Metabolic Syndrome (Mets) patients from healthy subjects, that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, OSAHS with MetS patients showed significantly higher Apnea Hyponea Index(AHI), but lower oxygen desaturation index(ODI 4/h) and minimum pulse oxygen saturation(SpO).

View Article and Find Full Text PDF

Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.

View Article and Find Full Text PDF

Agarwood is a highly prized resinous wood produced by select members of the Thymelaeaceae plant family. Its formation in Aquilaria species has been expedited using various induction techniques, revealing insights into factors affecting the chemical constituents of artificially induced agarwood. Building on this, our research delved into the potential of another Thymelaeaceae member, Gyrinops versteegii, as an alternate agarwood source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!