In order to metabolically engineer microorganisms to produce compounds of interest, it is often desirable to integrate foreign genes into the chromosome of the host. However, the consequences of these genetic alterations are not always predictable. The use of a reporter system can often assist in determining chromosomal locations for optimal expression of foreign biosynthetic genes. The method described here involves the construction and utilization of promoterless carotenoid transposons, which provides a colorimetric screen for identifying the best chromosomal integration sites for the expression of the genes of interest. The transposons (pUTmTn5::392W and pUTmTn5::392) contain the carotenoid genes required for the production of canthaxanthin and astaxanthin, respectively. Thus, when promoterless transposons insert into the host's genome, the color of the colonies will vary based on their chromosomal location. There is a correlation between the color intensity of the colonies and the expression of the carotenoid transposon. The transposon insertion site can be determined via direct chromosomal sequencing. This sequence information is used to guide the site-specific integration of biosynthetic genes and pathways of interest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-879-5_13 | DOI Listing |
Lasers Med Sci
January 2025
Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA).
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China.
Background: T cells are involved in every stage of tumor development and significantly influence the tumor microenvironment (TME). Our objective was to assess T-cell marker gene expression profiles, develop a predictive risk model for human papilloma virus (HPV)-negative oral squamous cell carcinoma (OSCC) utilizing these genes, and examine the correlation between the risk score and the immunotherapy response.
Methods: We acquired scRNA-seq data for HPV-negative OSCC from the GEO datasets.
Sci Rep
January 2025
Department of Respiratory medicine, Taian 88 Hospital, Taian, 271000, People's Republic of China.
Recent empirical investigations reinforce the understanding of a profound interconnection between metabolic functions and Obstructive Sleep Apnea-hypopnea Syndrome (OSAHS). This study identifies distinctive miRNA signatures in OSAHS with Metabolic Syndrome (Mets) patients from healthy subjects, that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, OSAHS with MetS patients showed significantly higher Apnea Hyponea Index(AHI), but lower oxygen desaturation index(ODI 4/h) and minimum pulse oxygen saturation(SpO).
View Article and Find Full Text PDFSci Rep
January 2025
Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, West Java, 40132, Indonesia.
Agarwood is a highly prized resinous wood produced by select members of the Thymelaeaceae plant family. Its formation in Aquilaria species has been expedited using various induction techniques, revealing insights into factors affecting the chemical constituents of artificially induced agarwood. Building on this, our research delved into the potential of another Thymelaeaceae member, Gyrinops versteegii, as an alternate agarwood source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!