Inhibitors of PI3K signaling are of great therapeutic interest in oncology. The phosphoinositide-3-kinase signaling pathway is activated in a variety of solid and non-solid tumors. We have identified an imidazopyrazine derivative, ETP-46321, as a potent inhibitor of PI3Kα [Formula: see text]. The compound was 6 times less potent towards PI3Kδ and more than 200 and 60 times less potent at inhibiting PI3Kβ and PI3Kγ and did not significantly inhibit the related phosphoinositide-3-kinase-related protein kinase family kinases mTOR or DNA PK (IC(50)'s > 5 μM), or an additional 287 protein kinases that were screened. ETP-46321 inhibited PI3K signaling in treated tumor cell lines, induced cell cycle arrest and inhibited VEGF-dependent sprouting of HUVEC cells. The compound was anti-proliferative and synergized with both cytotoxic and targeted therapeutics. The compound induced a reduction in the phosphorylation of Akt in U87 MG xenografts after a single treatment. The growth of colon and lung cancinoma HT-29 and A549 xenografts was delayed by once a day treatment with ETP-46321. The compound synergized with Doxotaxel in a model of ovarian cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10637-012-9835-5DOI Listing

Publication Analysis

Top Keywords

pi3k signaling
8
times potent
8
biological characterization
4
etp-46321
4
characterization etp-46321
4
etp-46321 selective
4
selective efficacious
4
efficacious inhibitor
4
inhibitor phosphoinositide-3-kinases
4
phosphoinositide-3-kinases inhibitors
4

Similar Publications

Tianxiangdan suppresses foam cell formation by enhancing lipophagy and reduces the progression of atherosclerosis.

In Vitro Cell Dev Biol Anim

January 2025

College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.

The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.

View Article and Find Full Text PDF

Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

Uveal melanoma (UM) poses a significant lethality, with approximately 50% of those developing metastases surviving less than one year. In the progression of UM, vasculogenic mimicry (VM) induced by hypoxia plays a pivotal role, which also partially explains the resistance of UM to anti-angiogenic therapies. Nevertheless, the crucial molecular mechanisms underlying VM in the progression of UM remain unclear.

View Article and Find Full Text PDF

Network Pharmacology Unveils Multi-Systemic Intervention of Panax notoginseng in Osteoporosis via Key Genes and Signaling Pathways.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Orthopaedics, Xiaolan People's Hospital of Zhongshan, Zhongshan, Guangdong Province, People's Republic of China.

Background: Panax notoginseng (Burk.) F. H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!