Periodic density functional theory calculations are performed to study the hydrostatic compression effects on the structure, electronic, and thermodynamic properties of the energetic polyazide 4,4',6,6'-tetra(azido)hydrazo-1,3,5-triazine (TAHT) in the range of 0-100 GPa. At the ambient pressure, the local density approximation/Ceperley-Alder exchange-correlation potential parameterized by Perdew and Zunger relaxed crystal structure compares well with the experimental results. The predicted heat of sublimation is 38.68 kcal/mol, and the evaluated condensed phase of formation (414.04 kcal/mol) approximates to the experimental value. The detonation velocity and detonation pressure for the solid TAHT are calculated to be 7.44 km/s and 23.71 GPa, respectively. When the pressure is exerted less than 35 GPa, the crystal structure and geometric parameters change slightly. However, at 36 GPa, the molecular structure, band structure, and density of states change abnormally because of the azide-tetrazole transformation that has not been observed in gas phase or polar solvents. The azido group cyclizes to form a five-membered tetrazole ring that is coplanar with the riazine ring and contributes to a larger conjunction system. As the pressure augments further to 80 GPa, the hydrogen transfer is found and a new covalent bond H2-N9 is formed. In the studied pressure range, the band gap decreases generally except for some breaks due to the molecular transformation and drops to nearly zero at 100 GPa, which means the electronic character of the crystal changes toward a metallic system. An analysis of the electronic structure shows that an applied pressure increases the impact sensitivity of TAHT.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.23011DOI Listing

Publication Analysis

Top Keywords

density functional
8
functional theory
8
crystal structure
8
structure
6
gpa
6
pressure
6
density
4
theory study
4
study high-pressure
4
high-pressure crystalline
4

Similar Publications

The matere bond.

Dalton Trans

January 2025

Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.

This perpective delves into the emerging field of matere bonds, a novel type of noncovalent interaction involving group 7 elements such as manganese, technetium, and rhenium. Matere bonds, a new member of the σ-hole family where metal atoms act as electron acceptors, have been shown experimentally and theoretically to play significant roles in the self-assembly and stabilization of supramolecular structures both in solid-state and solution-phase environments. This perspective article explores the physical nature of these interactions, emphasizing their directionality and structural influence in various supramolecular architectures.

View Article and Find Full Text PDF

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

Room-Temperature Magnetic Antiskyrmions in Canted Ferrimagnetic CoHo Alloy Films.

Adv Mater

January 2025

School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.

Magnetic antiskyrmions, the anti-quasiparticles of magnetic skyrmions, possess alternating Bloch- and Néel-type spin spirals, rendering them promising for advanced spintronics-based information storage. To date, antiskyrmions are demonstrated in a few bulk materials featuring anisotropic Dzyaloshinskii-Moriya interactions and a limited number of artificial multilayers. Identifying novel film materials capable of hosting isolated antiskyrmions is critical for memory applications in topological spintronics.

View Article and Find Full Text PDF

Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.

View Article and Find Full Text PDF

The Citri Reticulatae Pericarpium (CRP), is the aged peel of Citrus fruit, which contains phenols, flavonoids, and polysaccharides. This study aims to investigate dietary CRP supplementation on the growth performance, serum biochemical indices, meat quality, intestinal morphology, microbiota, and metabolite of yellow-feathered broilers. A total of 240 yellow-feathered broilers (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!