The microdilution antifungal method (CLSI BMD, M27-A3) was used for testing the antifungal susceptibility of Malassezia species. However, optimal broth media that allow sufficient growth of M. pachydermatitis and produce reliable and reproducible MICs using the CLSI BMD protocol are yet to be established. In this study, the susceptibility of M. pachydermatis isolates to ketoconazole (KTZ), itraconazole (ITZ) and fluconazole (FLZ) was evaluated in vitro by the CLSI BMD test using Christensen's urea broth (CUB) and mRPMI 1640 containing lipid supplementation, Sabouraud dextrose broth with 1% tween 80 (SDB), and Dixon broth (DXB). A FLZ-resistant M. pachydermatis was generated in vitro and tested under the same conditions. A good growth of M. pachydermatis incubated for 48 and 72 h, respectively, was observed in CUB, SDB and DXB and not in mRPMI 1640 (p<0.001). No statistically significant differences were detected between the MIC values registered after 48 h and 72 h incubation. ITZ displayed lower MIC values than KTZ and FLZ regardless of the media employed. A large number of FLZ-resistant Malassezia strains (86.6%) was observed using DXB. A MIC>64 mg/L was observed only when the FLZ-resistant M. pachydermatis isolate was tested in SDB. Based on the results obtained herein, culture in SDB, stock inoculum suspensions of 1-5 × 10(6)CFU/ml, and an incubation time of 48 h are proposed as optimal conditions for the evaluation of the in vitro antifungal susceptibility of M. pachydermatis using a modified CLSI BMD protocol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2012.04.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!