Human serum albumin (HSA) is used as an important plasma volume expander in clinical practice. In the present study, HSA was N-terminally PEGylated and a PEGylated HAS (PEG-HSA) carrying one chain of PEG (20 kDa) per HSA molecule was obtained. The purity, secondary structure and hydrodynamic radius of the modified protein were characterized using sodium dodecyl sulfate polyacrylamide gel electrophoresis, circular dichroism measurements, and dynamic light scattering, respectively. The pharmacokinetics in normal mice and vascular permeability of the PEG-HSA in a lipopolysaccharide-induced acute lung injury mice model were evaluated. The results showed that the biological half-life of the modified HSA was approximately 2.2 times of that of native HSA, and PEG-HSA had a lower vascular permeability which suggested that PEGylation of HSA could reduce extravasation into interstitial space. It can be inferred that due to the prolonged half-life time and enhanced vascular retention, the molecularly homogeneous PEG-HSA may be a superior candidate as a plasma volume expander in treating capillary permeability increase related illness.

Download full-text PDF

Source

Publication Analysis

Top Keywords

human serum
8
serum albumin
8
plasma volume
8
volume expander
8
vascular permeability
8
hsa
6
n-terminal pegylation
4
pegylation human
4
albumin investigation
4
investigation pharmacokinetics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!