[Performance of new solid carbon source materials for denitrification].

Huan Jing Ke Xue

College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China.

Published: August 2011

Organic carbon is needed as the electron donor in the process of reduction of nitrate transformation to nitrogen gas, which is essential for biological denitrification. Based on previous research, agriculture wastes including corncob, rice hull, rice straw and sawdust were selected as potential carbon source for denitrification. Using the static organic material of carbon source leaching kinetics test and orthogonal experiments of external factors on carbon emission process, carbon release and its mechanism of a variety of carbon materials were studied. Study showed that release process of various types of carbon source materials follows the second dynamics formula, the release curve displayed a better double-reciprocal relationship. It revealed that release amount of rice straw was the highest and sawdust was the lowest. Results showed that corncob could better be used as carbon source for denitrification. Orthogonal test indicated that the increasing of solid-liquid ratio and water temperature would lead to an enhanced release capacity of carbon, however, the change of pH had no significant effect on release capacity of carbon; according to significant degree of water temperature, pH, solid-liquid ratio impacted on the carbon release, it was sorted by solid-liquid ratio > temperature > pH.

Download full-text PDF

Source

Publication Analysis

Top Keywords

carbon source
20
carbon
12
solid-liquid ratio
12
source materials
8
rice straw
8
source denitrification
8
carbon release
8
water temperature
8
release capacity
8
capacity carbon
8

Similar Publications

The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.

View Article and Find Full Text PDF

New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract.

Nat Prod Bioprospect

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina.

Chemically engineered extracts represent a promising source of new bioactive semi-synthetic molecules. Prepared through direct derivatization of natural extracts, they can include constituents enriched with elements and sub-structures that are less common in natural products compared to drugs. Fourteen such extracts were prepared through sequential reactions with hydrazine and a fluorinating reagent, and their α-glucosidase inhibition properties were compared.

View Article and Find Full Text PDF

The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review.

Int J Biol Macromol

January 2025

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China. Electronic address:

In higher plants, sugars are the primary products of photosynthesis, where in CO is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant.

View Article and Find Full Text PDF

Particle emissions study from tire sample with nano-silver tracer from different steps of its life cycle. A new approach to trace emissions of tire microparticles.

Sci Total Environ

January 2025

Direction Milieux et impacts sur le vivant, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France.

Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.

View Article and Find Full Text PDF

The combined effects of microplastics and their additives on mangrove system: From the sinks to the sources of carbon.

Sci Total Environ

January 2025

College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China. Electronic address:

Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!