[Study on bromate formation of catalytic ozonation process].

Huan Jing Ke Xue

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China.

Published: August 2011

AI Article Synopsis

  • - The study examined the production of BrO3(-) in the ozonation processes of Br(-)-containing Yellow River water using various heterogeneous catalysts, finding that catalytic ozonation significantly reduced BrO3(-) levels, especially with NiO and CuO.
  • - The experiment noted that as the reaction time increased, the concentration ratio of hydroxyl radicals (*OH) to ozone (O3) decreased, with a notable variance in the reaction rate constant (R(ct)) throughout the process.
  • - Additionally, the catalytic ozonation effectively removed about 60.7% of UV254 organic compounds after 20 minutes, demonstrating its dual capability to reduce BrO3(-) formation while also oxidizing organic pollutants. *

Article Abstract

In a batch reactor, the BrO3(-) formation was investigated in the ozonation and catalytic ozonation of Br(-)-containing Yellow river water, using the different heterogeneous catalysts. The results showed that BrO3(-) minimization was achieved in the catalytic ozonation with NiO, CuO, Fe3O4 and Al2O3 as catalysts and the percent reductions of BrO3(-) were 34.0%, 32.8%, 29.2% and 20.8% respectively. In the reaction R(ct), the ratio of concentration of *OH to O3, decreased with the reaction time, and the range of R(ct) was from 10(-8) to 10(-6). In the ozonation process, one of the main reaction pathways of BrO3(-) formation was the combination oxidation of Br(-) by *OH and then O3, another was the combination oxidation of Br(-) by O3 and then *OH. In the catalytic ozonation with Fe3O4 catalyst, the main pathway was the combination oxidation by *OH and then O3. Moreover, about 60.7% removal for UV254 was obtained after 20 min in the catalytic ozonation reaction. In our study, it was found that the catalytic ozonation process can effectively minimize the formation of BrO3(-) and also oxidize organic compounds.

Download full-text PDF

Source

Publication Analysis

Top Keywords

catalytic ozonation
24
combination oxidation
12
ozonation
8
bro3- formation
8
ozonation process
8
oxidation br-
8
br- *oh
8
catalytic
6
bro3-
5
[study bromate
4

Similar Publications

Ozone-based advanced oxidation processes in water treatment: recent advances, challenges, and perspective.

Environ Sci Pollut Res Int

January 2025

Bio-Microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran.

Water pollution, driven by a variety of enduring contaminants, poses considerable threats to ecosystems, human health, and biodiversity, highlighting the urgent need for innovative and sustainable treatment approaches. Ozone-based advanced oxidation processes (AOPs) have demonstrated significant efficacy in breaking down stubborn pollutants, such as organic micropollutants and pathogens, that are not easily addressed by traditional treatment techniques. This review offers an in-depth analysis of ozonation mechanisms, covering both the direct oxidation by ozone and the indirect reactions facilitated by hydroxyl radicals, emphasizing their effectiveness and adaptability across various wastewater matrices.

View Article and Find Full Text PDF

Clay-catalyzed ozonation of Norfloxacin - Effects of metal cation and degradation rate on aqueous media toxicity towards Lemna minor.

Chemosphere

January 2025

Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal, Québec, H3C 1K3, Canada. Electronic address:

Article Synopsis
  • Norfloxacin was ozonized in clay suspensions to study its toxicity on Lemna minor, which helps assess antibiotic impact in environments with clay.
  • The study found that norfloxacin causes toxicity in Lemna minor through oxidative stress, worsened by ozonation, affecting growth and chlorophyll levels.
  • Results indicate that the type of clay catalyst and the oxidation process influence the toxicity outcomes, revealing the potential formation of more harmful byproducts from the antibiotic.
View Article and Find Full Text PDF

Development, analysis, and effectiveness of an F-C-MgO/rGOP catalyst for the degradation of atrazine using ozonation process: Synergistic effect, mechanism, and toxicity assessment.

J Environ Manage

January 2025

Department of Chemistry, College of Science and Humanites at Al-Quway'iyahl, Shaqra University, Saudi Arabia. Electronic address:

This study considered the effects of fluoride, MgO, sucrose, and rGO on the characteristics of the fluoride-carbon-MgO/rGO predicted (F-C-MgO/rGOP) catalyst and its effectiveness in the catalytic ozonation process (COP) for atrazine elimination from aqueous solutions. Using a mixture design, the catalyst composition was optimized to 13.6% sucrose, 50% Mg (OH)2, 25% NaF, and 11.

View Article and Find Full Text PDF

Combined Catalytic Conversion of NOx and VOCs: Present Status and Prospects.

Materials (Basel)

December 2024

School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.

This article presents a comprehensive examination of the combined catalytic conversion technology for nitrogen oxides (NOx) and volatile organic compounds (VOCs), which are the primary factors contributing to the formation of photochemical smog, ozone, and PM2.5. These pollutants present a significant threat to air quality and human health.

View Article and Find Full Text PDF

Ground-level ozone (O) can infiltrate indoor environments, severely impacting the environment and human health. Moisture-induced catalyst deactivation is a major challenge in catalytic ozone removal. MOF-template-derived heterojunctions supported by carbon materials can prevent chemisorption of water vapor at active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!