During the last decade, due to advances in functionalization chemistry, novel nanobiomaterials with applications in tissue engineering and regenerative medicine have been developed. These novel materials with their unique physical and chemical properties are bioactive hierarchical structures that hold great promise for future development of human tissues. Thus, various nanomaterials are currently being intensively explored in the directed differentiation of stem cells, the design of novel bioactive scaffolds, and new research avenues towards tissue regeneration. This paper illustrates the latest achievements in the applications of nanotechnology in tissue engineering in the field of regenerative medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356220PMC
http://dx.doi.org/10.2147/IJN.S29975DOI Listing

Publication Analysis

Top Keywords

tissue engineering
8
regenerative medicine
8
influence nanomaterials
4
nanomaterials stem
4
stem cell
4
cell differentiation
4
differentiation designing
4
designing appropriate
4
appropriate nanobiointerface
4
nanobiointerface decade
4

Similar Publications

Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.

View Article and Find Full Text PDF

For noninvasive light-based physiological monitoring, optimal wavelengths of individual tissue components can be identified using absorption spectroscopy. However, because of the lack of sensitivity of hardware at longer wavelengths, absorption spectroscopy has typically been applied for wavelengths in the visible (VIS) and near-infrared (NIR) range from 400 to 1,000 nm. Hardware advancements in the short-wave infrared (SWIR) range have enabled investigators to explore wavelengths in the ~1,000 nm to 3,000 nm range in which fall characteristic absorption peaks for lipid, protein, and water.

View Article and Find Full Text PDF

Patterning soft materials with cell adhesion motifs can be used to emulate the structures found in natural tissues. While patterning in tissue is driven by cellular assembly, patterning soft materials in the laboratory most often involves light-mediated chemical reactions to spatially control the presentation of cell binding sites. Here we present hydrogels that are formed with two responsive crosslinkers-an anthracene-maleimide adduct and a disulfide linkage-thereby allowing simultaneous or sequential patterning using force and UV light.

View Article and Find Full Text PDF

Aim: To evaluate in vitro the antibacterial efficacy and cytocompatibility of different implant-decontamination methods, using both 2D and 3D peri-implant mucosa models.

Methods: Four decontamination methods [chlorhexidine (CHX), electrolytic treatment (GS), curcumin (CUR), xanthohumol (XN)] were compared in four independent experiments, three with a 2D peri-implant mucosa model on titanium surfaces and another on a 3D peri-implant mucosa model. These decontamination procedures were tested for their antibacterial effect using a multispecies biofilm model with Streptococcus oralis, Actinomyces naeslundii, Veillonella dispar, and Porphyromonas gingivalis for 24 h.

View Article and Find Full Text PDF

Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics.

Mol Pharm

January 2025

ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China.

Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!