An organic-inorganic molecular hybrid containing the Dawson polyoxometalate, ((C(4)H(9))(4)N)(5)H[P(2)V(3)W(15)O(59)(OCH(2))(3)CNHCOC(15)H(31)], was synthesized and its surfactant-like amphiphilic properties, represented by the formation of bilayer vesicles, were studied in polar solvents. The vesicle size decreases with both decreasing hybrid concentration and with increasing polarity of the solvent, independently. The self-assembly behavior of this hybrid can be controlled by introducing different counterions into the acetonitrile solutions. The addition of ZnCl(2) and NaI can cause a gradual decrease and increase of vesicular sizes, respectively. Tetraalkylammonium bromide is found to disassemble the vesicle assemblies. Moreover, the original counterions of the hybrid can be replaced with protons, resulting in pH-dependent formation of vesicles in aqueous solutions. The hybrid surfactant can further form micro-needle structures in aqueous solutions upon addition of Ca(2+) ions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201200362DOI Listing

Publication Analysis

Top Keywords

dawson polyoxometalate
8
solutions addition
8
aqueous solutions
8
hybrid
5
controllable self-assembly
4
self-assembly organic-inorganic
4
organic-inorganic amphiphiles
4
amphiphiles dawson
4
polyoxometalate clusters
4
clusters organic-inorganic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!