High throughput single molecule tracking methods were developed to perform quantitative analyses of rare molecular populations. An optimization strategy for single molecule tracking at interfaces is described that allowed tracking of ~10(6) unique trajectories. These large statistical datasets were analyzed in order to identify and characterize distinct molecular populations based on their characteristic dynamic behavior (residence time or surface diffusion) and/or their spatial distribution. Cumulative (i.e. integrated) probability distributions were found to be several orders of magnitude more sensitive to rare populations than were raw probability distributions. Mapping using Accumulated Probe Trajectories (MAPT) was used to characterize molecular populations associated with rare surface heterogeneities. Importantly, large sample sizes were found to result in a dramatic enhancement in the ability to identify rare populations and to resolve their dynamic and spatial parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2an16219a | DOI Listing |
J Am Chem Soc
January 2025
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Direct translocation of RNA with secondary structures using single-molecule electrophoresis through protein nanopores shows significant fluctuations in the measured ionic current, in contrast to unstructured single-stranded RNA or DNA. We developed a multiscale model combining the oxRNA model for RNA with the 3-dimensional Poisson-Nernst-Planck formalism for electric fields within protein pores, aiming to map RNA conformations to ionic currents as RNA translocates through three protein nanopores: α-hemolysin, CsgG, and MspA. Our findings reveal three distinct stages of translocation (pseudoknot, melting, and molten globule) based on contact maps and current values.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China.
The single-atom skeletal editing technology is an efficient method for constructing molecular skeletons, which has broad coverage in synthetic chemistry. However, its potential in the preparation of energetic heterocyclic molecules is grossly underexplored. In this work, an unexpected one-step reaction for the synthesis of novel energetic molecules was discovered which combines single-atom skeletal editing, -dinitromethyl functionalization, and zwitterionization in one step.
View Article and Find Full Text PDFSmall
January 2025
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Owing to the nanoscale thickness, excellent mechanical and chemical stabilities, 2D materials including graphene and hexagonal boron nitride have emerged as promising artificial solid electrolyte interphase (SEI) candidates for lithium metal batteries. However, whether the implementation of 2D materials is beneficial to electrochemical performance remains controversial, and the key to confining the electroplated Li beneath the 2D materials remains elusive. Here, a nanocrystalline graphene (NG) film is synthesized on high-carbon Cu and the Li plating/stripping behavior on Cu grown with different 2D materials is investigated.
View Article and Find Full Text PDFJ Org Chem
January 2025
Division of Theoretical Chemistry, IFM, Linköping University, 58183 Linköping, Sweden.
The harmonic oscillator model of aromaticity (HOMA) offers a straightforward route to quantifying aromaticity that requires no other information than the bond lengths of the conjugated ring in question. Given that such information is often readily obtainable from quantum-chemical calculations, it is pertinent to improve this parametrized model as much as possible. Here, a new version of HOMA is presented where, atypically, the corresponding parameters are derived from the actual bond lengths of both aromatic and antiaromatic (rather than nonaromatic) reference compounds, as calculated with a high-level method.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), Seongnam-si, South Korea.
Background: Development of acute kidney injury (AKI) in patients with sepsis is associated with increased mortality, highlighting the importance of early detection and management. However, baseline creatinine or urine output measurements are required for AKI diagnosis, which can be challenging in emergency departments (EDs). We aimed to evaluate the association between urinary biomarkers and the AKI diagnosis or 30-day survival status in patients with sepsis in the ED.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!