Owing to the weak reactivities of monomeric DManα1 and Galβ1-->3/4GlcNAcβ (I(β)/II(β)) glycotopes with Ralstonia solanacearum lectin (RSL), their recognition roles were previously ignored. In this study, the interaction intensities of RSL toward four monomeric glycotopes LFucα1-->, DManα1--> and I(β)/II(β) within two combining sites were established by both enzyme-linked lectinosorbent and inhibition assays. It was found that high density of LFucα1--> complex enhanced the recognition intensities at LFucα1--> site, polyvalent DManα1--> was essential for binding at the DManα1--> site and polyvalent I(β)/II(β) was required at LFucα1--> site. The peculiar recognition systems of RSL are very different from other well known microbial lectins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2012.03.024DOI Listing

Publication Analysis

Top Keywords

combining sites
8
ralstonia solanacearum
8
solanacearum lectin
8
lectin rsl
8
lfucα1--> dmanα1-->
8
lfucα1--> site
8
site polyvalent
8
lfucα1-->
5
relative intensities
4
recognition
4

Similar Publications

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

The proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding.

View Article and Find Full Text PDF

Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrate that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveil how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site.

View Article and Find Full Text PDF

Short tandem repeats delineate gene bodies across eukaryotes.

Nat Commun

December 2024

Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.

Short tandem repeats (STRs) have emerged as important and hypermutable sites where genetic variation correlates with gene expression in plant and animal systems. Recently, it has been shown that a broad range of transcription factors (TFs) are affected by STRs near or in the DNA target binding site. Despite this, the distribution of STR motif repetitiveness in eukaryote genomes is still largely unknown.

View Article and Find Full Text PDF

CD163, a macrophage-specific receptor, plays a critical role in scavenging hemoglobin released during hemolysis, protecting against oxidative effects of heme iron. In the bloodstream, hemoglobin is bound by haptoglobin, leading to its immediate endocytosis by CD163. While haptoglobin's structure and function are well understood, CD163's structure and its interaction with the haptoglobin-hemoglobin complex have remained elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!