Asymmetric addition of arylboronic acids to α,β-unsaturated sulfonyl compounds proceeded in the presence of a rhodium catalyst coordinated with a chiral diene ligand to give high yields of the addition products with high enantioselectivity (96->99.5% ee). The diene ligand was proved to be essential for the formation of the addition products, while the use of a bisphosphine ligand mainly gave the cine-substitution product.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja303109q | DOI Listing |
J Mol Model
December 2024
College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
Context: Nickel-catalyzed hydroamination of dienes with phenylmethanamines was studied theoretically to investigate reaction mechanism. These calculated results revealed that Ni-catalyzed hydroamination began with the O - H bond activation of trifluoroethanol, including three important elementary steps: the ligand-to-ligand hydrogen migration, the nucleophilic attack of phenylmethanamine, and hydrogen migration. The nucleophilic attack of phenylmethanamine was the rate-determining step, and the branched product of 3,4-addition with (S)-chirality was the most dominant.
View Article and Find Full Text PDFJ Org Chem
December 2024
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
A copper catalyzed enantioselective formal aza-Diels-Alder reaction of formed 1,2-diaza-1,3-dienes from α-halohydrazones and vinyl diazo compounds was described. The protocol provides a variety of optically enriched diazo-containing tetrahydropyridazines in moderate yields and with up to excellent enantioselectivities. The present methodologies utilize chiral oxazolines as the chiral ligands for asymmetric catalysis and feature mild reaction conditions, readily available substrates, and broad substrate scope.
View Article and Find Full Text PDFMolecules
November 2024
Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, F-67087 Strasbourg, France.
Ψ-1,4-naphthoquinones (Ψ-NQ) are non-quinoid compounds in which aromaticity-found in 1,4-naphthoquinones-is broken by the introduction of an angular methyl at C-4a or -8a. This series was designed to act as prodrugs of 1,4-naphthoquinones in an oxidative environment. Furthermore, from a medicinal chemistry point of view, the loss of planarity of the scaffold might lead to an improved solubility and circumvent the bad reputation of quinones in the pharmaceutical industry.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
The synthesis of chiral 1,1-diaryl compounds, particularly those containing a pyridine moiety, is of significant interest due to their pharmaceutical applications. Here, we report the development of a copper-catalyzed enantioselective 1,4-hydropyridylation of conjugated dienes. Utilizing 2-fluoropyridine as the electrophile, CuOAc, and the chiral ligand Tol-BINAP, we optimized reaction conditions to achieve the desired chiral 1,1-diaryl products containing both a pyridine and a cis-crotyl group.
View Article and Find Full Text PDFChempluschem
November 2024
Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
The poorly understood factors controlling the reactivity and selectivity (both stereo- and enantioselectivity) of catalyzed Diels-Alder reactions involving cyclobutenones as dienophiles have been analyzed in detail by means of Density Functional Theory calculations. To this end, the reactions with cyclopentadiene and furan as dienes and 3-(methoxycarbonyl)cyclobutenone catalyzed by Corey's chiral oxazaborolidium ion (COBI) have been selected and compared to their analogous uncatalyzed transformations. The combined Activation Strain Model of reactivity and Energy Decomposition Analysis methods have been used to quantitatively understand the acceleration and selectivity induced by the catalyst in this reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!