Structural characterization of a new high-pressure AlPO(4) phase synthesized at 5 GPa and 1500 °C is reported. The phase is monoclinic (P2/a) with a = 8.7437(1) Å, b = 4.8584(1) Å, c = 10.8600(2) Å, β = 90.124(1)° (Z = 6). (31)P MAS NMR and two-dimensional (2D) (27)Al triple-quantum (3Q) MAS NMR revealed that it contains two tetrahedral P sites of 1:2 abundance ratio, and two tetrahedral Al sites with 1:2 ratio. 2D (31)P dipolar-recoupled double-quantum (DQ) MAS NMR and (27)Al → (31)P dipolar-based (through-space) and J coupling-based (through-bond) 3Q-heteronuclear correlation (HETCOR) experiments provided direct information on the linkages of these sites. The crystal structure was solved and refined from synchrotron powder X-ray diffraction data utilizing the information from NMR. The phase is isostructural to moganite, a rare SiO(2) polymorph, and its structure can be derived from the latter via an ordered replacement of tetrahedral Si sites by Al and P. The NMR parameters of the phase were also calculated by first-principles method, which are consistent with those observed. Contrary to the other moganite phases known to date (i.e., SiO(2) and PON), moganite-AlPO(4) has a higher-pressure stability field than the corresponding quartz phase. This is the first moganite-type phase found in the ABX(4) system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic300167k | DOI Listing |
In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) H-H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz).
View Article and Find Full Text PDFNat Commun
December 2024
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
While H-H J-couplings are the cornerstone of all spectral assignment methods in solution-state NMR, they are yet to be observed in solids. Here we observe H-H J-couplings in plastic crystals of (1S)-(-)-camphor in solid-state NMR at magic angle spinning (MAS) rates of 100 kHz and above. This is enabled in this special case because the intrinsic coherence lifetimes at fast MAS rates become longer than the inverse of the H-H J couplings.
View Article and Find Full Text PDFFront Behav Neurosci
December 2024
Department of Radiological Technology, Niigata University of Health and Welfare, Niigata, Japan.
Introduction: Anxiety is an emotion necessary for human survival. However, persistent and excessive anxiety can be clinically challenging. Increased anxiety affects daily life and requires early detection and intervention.
View Article and Find Full Text PDFRadiol Case Rep
February 2025
Rheumatology Department, University Hospital Son Llátzer, Mallorca, Spain.
Osseous sarcoidosis is a rare manifestation of sarcoidosis, often mimicking other conditions like metastatic disease. Skeletal involvement occurs in only 3%-13% of cases (1), making diagnosis challenging. We present the case of a 63-year-old female with a 1-month history of inflammatory bone pain and multiple lytic and blastic lesions.
View Article and Find Full Text PDFJ Sep Sci
December 2024
Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany.
The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!