Interferon (IFN)-β inhibits cell proliferation and affects cell cycle in keratinocytes transformed by both mucosal high risk Human Papilloma Virus (HPV) and cutaneous HPV E6 and E7 proteins. In particular, upon longer IFN-β treatments, cutaneous HPV38 expressing cells undergo senescence. IFN-β appears to induce senescence by upregulating the expression of the tumor suppressor PML, a well known IFN-induced gene. Indeed, experiments in gene silencing via specific siRNAs have shown that PML is essential in the execution of the senescence programme and that both p53 and p21 pathways are involved. IFN-β treatment leads to a modulation of p53 phosphorylation and acetylation status and a reduction in the expression of the p53 dominant negative ΔNp73. These effects allow the recovery of p53 transactivating activity of target genes involved in the control of cell proliferation. Taken together, these studies suggest that signaling through the IFN pathway might play an important role in cellular senescence. This additional understanding of IFN antitumor action and mechanisms influencing tumor responsiveness or resistance appears useful in aiding further promising development of biomolecular strategies in the IFN therapy of cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3353995PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036909PLOS

Publication Analysis

Top Keywords

cellular senescence
8
human papilloma
8
p53 transactivating
8
transactivating activity
8
cell proliferation
8
senescence
5
p53
5
interferon-β induces
4
induces cellular
4
senescence cutaneous
4

Similar Publications

Arginase (ARG) is a binuclear manganese-containing metalloenzyme that can convert L-arginine to L-ornithine and urea and plays a key role in the urea cycle. It also mediates different cellular functions and processes such as proliferation, senescence, apoptosis, autophagy, and inflammatory responses in various cell types. In mammals, there are two isoenzymes, ARG-1 and ARG-2; they are functionally similar, but their coding genes, tissue distribution, subcellular localization, and molecular regulation are distinct.

View Article and Find Full Text PDF

Beneficial Effects of a Moderately High-Protein Diet on Telomere Length in Subjects with Overweight or Obesity.

Nutrients

January 2025

Department of Nutrition, Food Sciences and Physiology, Center for Nutrition and Research, University of Navarra, 31008 Pamplona, Spain.

Background And Aim: Telomere length (TL) is a key biomarker of cellular aging, with shorter telomeres associated with age-related diseases. Lifestyle interventions mitigating telomere shortening are essential for preventing such conditions. This study aimed to examine the effects of two weight loss dietary strategies, based on a moderately high-protein (MHP) diet and a low-fat (LF) diet on TL in individuals with overweight or obesity.

View Article and Find Full Text PDF

Objectives: The present study describes the comparative effect of 24-week supplementation of beeswax alcohol (BWA, Raydel, 0.5% and 1.0%, wt/wt) and coenzyme Q (CoQ, 0.

View Article and Find Full Text PDF

To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin- Kit+ Sca1+ CD150+).

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learning methods, namely k nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), are utilized to identify eight key HCC cell senescence markers (HCC-CSMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!