Transmission electron microscopy reveals distinct macrophage- and tick cell-specific morphological stages of Ehrlichia chaffeensis.

PLoS One

Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America.

Published: September 2012

Background: Ehrlichia chaffeensis is an emerging tick-borne rickettsial pathogen responsible for human monocytic ehrlichiosis. Despite the induction of an active host immune response, the pathogen has evolved to persist in its vertebrate and tick hosts. Understanding how the organism progresses in tick and vertebrate host cells is critical in identifying effective strategies to block the pathogen transmission. Our recent molecular and proteomic studies revealed differences in numerous expressed proteins of the organism during its growth in different host environments.

Methodology/principal Findings: Transmission electron microscopy analysis was performed to assess morphological changes in the bacterium within macrophages and tick cells. The stages of pathogen progression observed included the attachment of the organism to the host cells, its engulfment and replication within a morulae by binary fission and release of the organisms from infected host cells by complete host cell lysis or by exocytosis. E. chaffeensis grown in tick cells was highly pleomorphic and appears to replicate by both binary fission and filamentous type cell divisions. The presence of Ehrlichia-like inclusions was also observed within the nucleus of both macrophages and tick cells. This observation was confirmed by confocal microscopy and immunoblot analysis.

Conclusions/significance: Morphological differences in the pathogen's progression, replication, and processing within macrophages and tick cells provide further evidence that E. chaffeensis employs unique host-cell specific strategies in support of adaptation to vertebrate and tick cell environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352939PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036749PLOS

Publication Analysis

Top Keywords

tick cells
16
host cells
12
macrophages tick
12
transmission electron
8
electron microscopy
8
tick
8
ehrlichia chaffeensis
8
vertebrate tick
8
binary fission
8
cells
7

Similar Publications

Starvation Metabolism Adaptations in Tick Embryonic Cells BME26.

Int J Mol Sci

December 2024

Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.

Ticks are hematophagous ectoparasites that transmit pathogens and inflict significant economic losses on the cattle industry. Remarkably, they can survive extended periods of starvation in the absence of a host. The primary objective of this study was to investigate the metabolic adaptations that enable the tick to endure starvation using the BME26 cell line as a model system.

View Article and Find Full Text PDF

Development of In-Labeled Monoclonal Antibodies Targeting SFTSV Structural Proteins for Molecular Imaging of SFTS Infectious Diseases by SPECT.

Molecules

December 2024

Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan.

No effective vaccines or treatments are currently available for severe fever with thrombocytopenia syndrome (SFTS), a fatal tick-borne infectious disease caused by the SFTS virus (SFTSV). This study evaluated the potential of In-labeled anti-SFTSV antibodies targeting SFTSV structural proteins as single-photon emission computed tomography (SPECT) imaging agents for the selective visualization of SFTSV-infected sites. This study used nuclear medicine imaging to elucidate the pathology of SFTS and assess its therapeutic efficacy.

View Article and Find Full Text PDF

Background: Hemophagocytic lymphohistiocytosis (HLH) is an immunologic syndrome characterized by excessive inflammation and tissue injury due to uncontrolled activation of the phagocytic system. The underlying mechanism is a lack of downregulation of activated macrophages and lymphocytes by natural killer and T cells. Unfortunately, the diagnosis is often delayed or missed due to the rarity of the disease, decreased awareness, and clinical picture variability.

View Article and Find Full Text PDF

In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance.

View Article and Find Full Text PDF

Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!