Contribution of cryoelectron microscopy of vitreous sections to the understanding of biological membrane structure.

Proc Natl Acad Sci U S A

Laboratoire de Physique des Solides, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8502, Université Paris-Sud XI, 91405 Orsay cedex, France.

Published: June 2012

Using cryoelectron microscopy of vitreous sections, we investigated in situ the ultrastructure of biological membranes, selected from several cell types for their diverse biological functions. Here we describe how to visualize the two membrane leaflets and tightly apposed membranes, lying as close as 1.1 nm apart, by tuning the imaging conditions. We show how defects in membrane stacks may be clues to resolving their structure. Details of membrane proteins are also resolved, as well as protein lattices with correlations between stacked membranes. Imaging the cell in its native hydrated state can now be done in the nanometer resolution range, which should open unique routes for investigating structure-function relationships.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384177PMC
http://dx.doi.org/10.1073/pnas.1200881109DOI Listing

Publication Analysis

Top Keywords

cryoelectron microscopy
8
microscopy vitreous
8
vitreous sections
8
contribution cryoelectron
4
sections understanding
4
understanding biological
4
membrane
4
biological membrane
4
membrane structure
4
structure cryoelectron
4

Similar Publications

MagIC beads for scarce macromolecules.

Elife

January 2025

Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.

View Article and Find Full Text PDF

Cryo-EM structure of human TUT1:U6 snRNA complex.

Nucleic Acids Res

January 2025

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.

U6 snRNA (small nuclear ribonucleic acid) is a ribozyme that catalyzes pre-messenger RNA (pre-mRNA) splicing and undergoes epitranscriptomic modifications. After transcription, the 3'-end of U6 snRNA is oligo-uridylylated by the multi-domain terminal uridylyltransferase (TUTase), TUT1. The 3'- oligo-uridylylated tail of U6 snRNA is crucial for U4/U6 di-snRNP (small nuclear ribonucleoprotein) formation and pre-mRNA splicing.

View Article and Find Full Text PDF

Calcium binding to troponin triggers the contraction of skeletal and heart muscle through structural changes in the thin filaments that allow myosin motors from the thick filaments to bind to actin and drive filament sliding. Here, we review studies in which those changes were determined in demembranated fibres of skeletal and heart muscle using fluorescence for in situ structure (FISS), which determines domain orientations using polarised fluorescence from bifunctional rhodamine attached to cysteine pairs in the target domain. We describe the changes in the orientations of the N-terminal lobe of troponin C (TnC) and the troponin IT arm in skeletal and cardiac muscle cells associated with contraction and compare the orientations with those determined in isolated cardiac thin filaments by cryo-electron microscopy.

View Article and Find Full Text PDF

Unlabelled: Myosin-IC (myo1c) is a class-I myosin that supports transport and remodeling of the plasma membrane and membrane-bound vesicles. Like other members of the myosin family, its biochemical kinetics are altered in response to changes in mechanical loads that resist the power stroke. However, myo1c is unique in that the primary force-sensitive kinetic transition is the isomerization that follows ATP binding, not ADP release as in other slow myosins.

View Article and Find Full Text PDF

The bile acid-sensitive ion channel (BASIC) is the least understood member of the mammalian epithelial Na channel/degenerin (ENaC/DEG) superfamily of ion channels, which are involved in a variety of physiological processes. While some members of this superfamily, including BASIC, are inhibited by extracellular Ca (Ca ), the molecular mechanism underlying Ca modulation remains unclear. Here, by determining the structure of human BASIC in the presence and absence of Ca using single particle cryo-electron microscopy (cryo-EM), we reveal Ca -dependent conformational changes in the transmembrane domain and β-linkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!