NKp46 is a primary activating receptor of NK cells that is involved in lysis of target cells by NK cells. Previous studies showed that the membrane-proximal domain of NKp46 (NKp46D2) retained the binding of NKp46 to its ligands and is involved in lysis. We studied NKp46D2 by using a peptide-based epitope mapping approach and identified an NKp46D2-derived linear epitope that inhibited NKp46-mediated lysis. The epitope, designated as pep4 (aa 136-155), interacted with NKp46, and lysis by NK cells was inhibited by the presence of pep4. Through modeling and mutagenesis, we showed that pep4 could be involved in NKp46 homodimerization. R145 and D147 contribute to the function of pep4, and R145Q mutation in recombinant NKp46 reduced its binding to target cells. At the cellular level, fluorescent resonance energy transfer analysis revealed that pep4 is indeed involved in dimerization of cell membrane-associated NKp46. We suggest that the NKp46-derived pep4 site is part of the dimerization surface of NKp46 and that NKp46 dimerization contributes to NKp46-mediated lysis by NK cells.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1102496DOI Listing

Publication Analysis

Top Keywords

nkp46-mediated lysis
12
nkp46
9
epitope mapping
8
involved lysis
8
target cells
8
lysis cells
8
pep4 involved
8
lysis
6
cells
6
pep4
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!