The slow kinetics of the electrochemical oxygen reduction reaction (ORR) is a crucial bottleneck in the development of microbial fuel cells (MFCs). This article firstly gives an overview of the particular constraints imposed on ORR by MFC operating conditions: neutral pH, slow oxygen mass transfer, sensitivity to reactive oxygen species, fouling and biofouling. A review of the literature is then proposed to assess how microbial catalysis could afford suitable solutions. Actually, microbial catalysis of ORR occurs spontaneously on the surface of metallic materials and is an effective motor of microbial corrosion. In this framework, several mechanisms have been proposed, which are reviewed in the second part of the article. The last part describes the efforts made in the domain of MFCs to determine the microbial ecology of electroactive biofilms and define efficient protocols for the formation of microbial oxygen-reducing cathodes. Although no clear mechanism has been established yet, several promising solutions have been recently proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201100836 | DOI Listing |
Int J Mol Sci
December 2024
College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou 434025, China.
α-Arbutin is the fourth generation whitening factor in the field of cosmetics, which can block the synthesis of melanin in epidermal cells and has the advantages of good stability and less toxic side effects. Moreover, α-arbutin has potential application value in food, medicine, and other fields. However, the extraction yield from plant tissues is relatively low, which restricts its application value.
View Article and Find Full Text PDFTalanta
January 2025
College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Hebei Provincial Key Laboratory of Analysis and Control for Zoonoses Microbial, Baoding, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China. Electronic address:
Zearalenone has a high level of detection and exceedance in cereals and by-products. Herein, an electrochemical aptasensor for ZEN detection was proposed. The selected aptamer, which has a high affinity for ZEN, serves as a molecular recognition element and effectively avoids interference from other toxins.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, Egypt.
Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.
Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.
Sci Rep
January 2025
Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, Algeria.
Polymicrobial biofilm infections, especially associated with medical devices such as peripheral venous catheters, are challenging in clinical settings for treatment and management. In this study, we examined the mixed biofilm formed by Candida glabrata and Klebsiella pneumoniae, which were co-isolated from the same peripheral venous catheter. Our results revealed that C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!