Novel phosphorescent hydrogels have been explored by immobilizing an Ir(III) metal complex into the matrices of hydrogels. FTIR spectra demonstrate that the Ir(III) -PNaAMPS hydrogel is achieved by irreversible incorporation of positively charged [Ir(ppy)(2)(dmbpy)]Cl (ppy = 2-phenylpyrine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine) into negatively charged poly(2-acrylamido-2-methylpropane sulfonic acid sodium) (PNaAMPS) hydrogel via electrostatic interaction. The photoluminescent spectra indicate that the Ir(III)-PNaAMPS hydrogel exhibits stable phosphorescence. In vitro cultivation of human retinal pigment epithelial cells demonstrates the cytocompatibility of the Ir(III)-PNaAMPS hydrogel. This work herein represents a facile pathway for fabrication of phosphorescent hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201200136 | DOI Listing |
Nat Commun
December 2024
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, PR China.
Room temperature phosphorescent (RTP) hydrogels exhibit great potential but show poor mechanical performance (Tensile strengthen <1 MPa) and non-tunable RTP performance, hindering their practical applications. Here, we develop wood hydrogel (W-hydrogel) by the in situ polymerization of acrylamide in the presence of delignified wood. As a result of the molecular interactions between the components of delignified wood and polyacrylamide, the W-hydrogel exhibit a tensile strengthen of 38.
View Article and Find Full Text PDFACS Sens
November 2024
Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.
Chronic diseases, including diabetes, cardiovascular diseases, and microvascular complications, contribute significantly to global morbidity and mortality. Current monitoring tools such as glucometers and continuous glucose monitors only measure one analyte; multiplexing technologies offer a promising approach for monitoring multiple biomarkers, enabling the management of comorbidities and providing more comprehensive disease insights. In this work, we describe a miniaturized optical "barcode" sensor with high biocompatibility for the continuous monitoring of glucose and oxygen.
View Article and Find Full Text PDFSmall
November 2024
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
Developing pure organic room-temperature phosphorescent (RTP) hydrogels is important for expanding the practical applications of phosphorescent materials. However, most of the reported RTP hydrogels containing aromatic phosphors suffer from short phosphorescent lifetimes, unstable underwater RTP emissions, and complex preparation processes. Herein, novel nonaromatic RTP hydrogels are prepared by using two types of non-traditional luminescent polymers, sodium alginate and a polymeric carboxylate, which are not RTP emissive or very weakly emissive in aqueous environments.
View Article and Find Full Text PDFAdv Mater
October 2024
School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China.
ACS Appl Bio Mater
June 2024
Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.
Phosphorescence-based oxygen-sensing hydrogels are a promising platform technology for an upcoming generation of insertable biosensors that are smaller, softer, and potentially more biocompatible than earlier designs. However, much remains unknown about their long-term performance and biocompatibility . In this paper, we design and evaluate a range of hydrogel sensors that contain oxygen-sensitive phosphors stabilized by micro- and nanocarrier systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!