Maximal thermogenic capacity and non-shivering thermogenesis in the South American subterranean rodent Ctenomys talarum.

J Comp Physiol B

Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.

Published: October 2012

Subterranean rodents inhabit closed tunnel systems that are hypoxic and hypercapnic and buffer aboveground ambient temperature. In contrast to other strictly subterranean rodents, Ctenomys talarum exhibits activity on the surface during foraging and dispersion and hence, is exposed also to the aboveground environment. In this context, this species is a valuable model to explore how the interplay between underground and aboveground use affects the relationship among basal metabolic rate (BMR), cold-induced maximum metabolic rate (MMR), shivering (ST), and non-shivering thermogenesis (NST). In this work, we provide the first evidence of the presence of NST, including the expression of uncoupling proteins in brown adipose tissue (BAT), and shivering thermogenesis in Ctenomys talarum, a species belonging to the most numerous subterranean genus, endemic to South America. Our results show no differences in BMR, cold-induced MMR, and NST between cold- (15 °C) and warm- (25 °C) acclimated individuals. Furthermore, thermal acclimation had no effect on the expression of mitochondrial uncoupling protein 1 (UCP1) in BAT. Only cytochrome c oxidase (COX) content and activity increased during cold acclimation. When interscapular BAT was removed, NST decreased more than 30%, whereas cold-induced MMR remained unchanged. All together, these data suggest that cold-induced MMR reaches a maximum in warm-acclimated individuals and so a probable ceiling in NST and UCP1 expression in BAT. Possible thermogenic mechanisms explaining the increase in the oxidative capacity, mediated by COX in BAT of cold-acclimated individuals and the role of ST in subterranean life habits are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00360-012-0675-6DOI Listing

Publication Analysis

Top Keywords

ctenomys talarum
12
cold-induced mmr
12
non-shivering thermogenesis
8
subterranean rodents
8
metabolic rate
8
bmr cold-induced
8
subterranean
5
nst
5
bat
5
maximal thermogenic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!