Ultrashort pulsed fiber laser welding and sealing of transparent materials.

Appl Opt

PolarOnyx, Inc., San Jose, California 94538, USA.

Published: May 2012

In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.51.002979DOI Listing

Publication Analysis

Top Keywords

fiber laser
12
ultrashort pulsed
8
welding sealing
8
transparent materials
8
usp fiber
8
laser demonstrated
8
laser
6
pulsed fiber
4
welding
4
laser welding
4

Similar Publications

Defects Calculation and Accelerated Interfacial Charge Transfer in a Photoactive MOF-Based Heterojunction.

Small

January 2025

Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.

Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

Squeezed dual-comb spectroscopy.

Science

January 2025

Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA.

Optical frequency combs have enabled unique advantages in broadband, high-resolution spectroscopy and precision interferometry. However, quantum mechanics ultimately limits the metrological precision achievable with laser frequency combs. Quantum squeezing has led to significant measurement improvements with continuous wave lasers, but experiments demonstrating metrological advantage with squeezed combs are less developed.

View Article and Find Full Text PDF

Motion-less depth-selective optogenetic probe using tapered fiber and an electrically tuneable liquid crystal steering element.

Biomed Opt Express

January 2025

Center for Optics, Photonics and Lasers, Department of Physics, Engineering Physics and Optics, Université Laval, 2375 Rue de la Terrasse, Québec, Québec G1V 0A6, Canada.

A miniature electrically tuneable liquid crystal component is used to steer light from -1° to +1° and then to inject into a simple tapered fiber. This allows the generation of various propagation modes, their leakage, and selective illumination of the surrounding medium at different depth levels without using mechanical movements nor deformation. The performance of the device is characterized in a reference fluorescence medium (Rhodamine 6G) as well as in a mouse brain (medullary reticular formation and mesencephalic locomotor regions) during in-vivo experiments as a proof of concept.

View Article and Find Full Text PDF

A novel, to the best of our knowledge, approach for the modal decomposition of a fiber laser beam is demonstrated using a spatial mode multiplexer. Since the modal decomposition is carried out optically, this approach is able to obtain the modal content at speeds up to the GHz level. In order to demonstrate such performance, we have applied this approach to the modal analysis of a -switched pulse generated in a multimode fiber with alternating intra-pulse mode content.

View Article and Find Full Text PDF

In this Letter, we report an ultraflat high-power supercontinuum (SC) based on a low-loss short-length fluorotellurite fiber. A novel high-peak power dual-Raman soliton femtosecond laser is used as a pump source, which effectively extends the mid-infrared SC spectral range and enhances the flatness of the SC. Finally, we obtained a 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!