Conventional chiral ligands rely on the use of a covalently constructed, single chiral molecule embedded with coordinative functional groups. Here, we report a new strategy for the design of a chiral ligand for asymmetric transition-metal catalysis; our approach is based on the development of an achiral cationic ammonium-phosphine hybrid ligand paired with a chiral binaphtholate anion. This ion-paired chiral ligand imparts a remarkable stereocontrolling ability to its palladium complex, which catalyses a highly enantioselective allylic alkylation of α-nitrocarboxylates. By exploiting the possible combinations of the achiral onium entities with suitable coordinative functionalities and readily available chiral acids, this approach should contribute to the development of a broad range of metal-catalysed, stereoselective chemical transformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nchem.1311 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!