We present a new method for rapid microRNA detection with a small volume of sample using the power-free microfluidic device driven by degassed PDMS. Target microRNA was detected by sandwich hybridization taking advantage of the coaxial stacking effect. This method allows us to detect miR-21 in 20 min with a 0.5 μL sample volume at a limit of detection of 0.62 nM. Since microRNAs can act as cancer markers, this method might substantially contribute to future point-of-care cancer diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2an16154kDOI Listing

Publication Analysis

Top Keywords

rapid microrna
8
microrna detection
8
power-free microfluidic
8
coaxial stacking
8
sandwich hybridization
8
detection power-free
4
microfluidic chip
4
chip coaxial
4
stacking enhances
4
enhances sandwich
4

Similar Publications

Exploring the mechanisms of cadmium tolerance and bioaccumulation in a soil amoeba.

Sci Total Environ

January 2025

School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

Cadmium (Cd) pollution is a global concern. Protists represent a prevalent yet understudied group in soil ecosystems, but our understanding of how protists interact with Cd remains limited. This study investigates the interaction between Cd and the soil amoeba Dictyostelium discoideum, focusing on its resistance, accumulation, and molecular mechanisms.

View Article and Find Full Text PDF

Hotspots and trends in stem cell therapy for liver fibrosis and cirrhosis: A bibliometric analysis.

World J Hepatol

January 2025

Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China.

Background: Liver fibrosis and cirrhosis are global medical challenges that require safe and effective treatments. In the past two decades, there has been a surge in research on stem cell therapy for liver fibrosis and cirrhosis. This study aimed to conduct a comprehensive analysis of the research hotspots and trends in this field through bibliometrics.

View Article and Find Full Text PDF

The clinical syndrome appears as a dysregulated host response to infection that results in life-threatening organ dysfunction known as Sepsis. Sepsis is a serious public health concern where for every five deaths in ICU there is one patient who dies with sepsis worldwide. Sepsis is featured as unbalanced inflammation and immunosuppression which is sustained and profound, increasing patient susceptibility to secondary infections and mortality.

View Article and Find Full Text PDF

Rapid and accurate diagnostics are needed to effectively detect and treat primary amoebic meningoencephalitis (PAM) caused by (). Delayed diagnosis and similarities to other causes of meningitis contribute to a case mortality rate of >97%. Thus, there is an unmet medical need for a non-invasive liquid biopsy diagnostic method.

View Article and Find Full Text PDF

Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!