A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulation of excitability, membrane currents and survival of cardiac myocytes by N-acylethanolamines. | LitMetric

AI Article Synopsis

  • N-acylethanolamines (NAE), particularly N-stearoylethanolamine (SEA) and N-oleoylethanolamine (OEA), impact the electrical activity of cardiomyocytes in neonatal rat hearts by hyperpolarizing the resting potential and shortening action potential durations.
  • OEA is more effective than SEA in reducing currents through voltage-gated Na(+) and L-type Ca(2+) channels, while also influencing K(+) and Cl(-) conductance differently based on the cardiac myocyte type.
  • The study suggests that the inhibitory effects of SEA and OEA on excitability may possess cardioprotective properties during conditions like ischemia and infarction, as NAEs increase in such pathological

Article Abstract

N-acylethanolamines (NAE) are endogenously produced lipids playing important roles in a diverse range of physiological and pathological conditions. In the present study, using whole-cell patch clamp technique, we have for the first time investigated the effects of the most abundantly produced NAEs, N-stearoylethanolamine (SEA) and N-oleoylethanolamine (OEA), on electric excitability and membrane currents in cardiomyocytes isolated from endocardial, epicardial, and atrial regions of neonatal rat heart. SEA and OEA (1-10μM) attenuated electrical activity of the myocytes from all regions of the cardiac muscle by hyperpolarizing resting potential, reducing amplitude, and shortening the duration of the action potential. However, the magnitudes of these effects varied significantly depending on the type of cardiac myocyte (i.e., endocardial, epicardial, atrial) with OEA being generally more potent. OEA and to a lesser extent SEA suppressed in a concentration-dependent manner currents through voltage-gated Na(+) (VGSC) and L-type Ca(2+) (VGCC) channels, but induced variable cardiac myocyte type-dependent effects on background K(+) and Cl(-) conductance. The mechanisms of inhibitory action of OEA on cardiac VGSCs and VGCCs involved influence on channels' activation/inactivation gating and partial blockade of ion permeation. OEA also enhanced the viability of cardiac myocytes by reducing necrosis without a significant effect on apoptosis. We conclude that SEA and OEA attenuate the excitability of cardiac myocytes mainly through inhibition of VGSCs and VGCC-mediated Ca(2+) entry. Since NAEs are known to increase during tissue ischemia and infarction, these effects of NAEs may mediate some of their cardioprotective actions during these pathological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2012.05.003DOI Listing

Publication Analysis

Top Keywords

cardiac myocytes
12
excitability membrane
8
membrane currents
8
pathological conditions
8
endocardial epicardial
8
epicardial atrial
8
sea oea
8
cardiac myocyte
8
cardiac
7
oea
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!