Background: We have previously demonstrated aerosol delivery during conventional and high frequency oscillatory (HFOV) ventilation using magnetic resonance imaging (MRI) in piglets. There are no reports on aerosol delivery during high frequency jet ventilation (HFJV).
Objective: To compare delivery of aerosolized gadopentetate dimeglumine (Gd-DTPA) in 3 neonatal ventilator circuits: conventional mechanical ventilation, HFOV, and HFJV.
Methods: Aerosols of Gd-DTPA (0.025 mol/L) generated using a jet nebulizer placed in the inspiratory limb of each ventilator were delivered into an in vitro lung model simultaneously. Multi-slice T1-weighted spin-echo sequence scans were obtained prior to and after 10 and 20 min of cumulative aerosol delivery. Gd-DTPA concentration was calculated from signal intensity changes, and the total amount of Gd-DTPA was estimated.
Results: Gd-DTPA was visualized in the lung model at 10 and 20 min for all 3 ventilators. Gd-DTPA delivery was highest with conventional mechanical ventilation (1.92 μmol at 10 min, 2.89 μmol at 20 min), followed by HFJV (1.59 μmol at 10 min, 1.98 μmol at 20 min) and HFOV (0.79 μmol at 10 min, 1.00 μmol at 20 min).
Conclusions: This is the first report of effective aerosol delivery in a neonatal HFJV circuit. Future studies are needed for more accurate quantification of aerosol deposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4187/respcare.01746 | DOI Listing |
ACS Nano
January 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases.
View Article and Find Full Text PDFInt J Pharm
January 2025
HUN-REN Centre for Energy Research, Konkoly Thege M. út, 29-33, 1121 Budapest, Hungary. Electronic address:
In the majority of aerosol drug deposition modelling efforts, the particles are approximated by regular spheres. However, microscope images acquired after drug formulation available in the open literature suggest that their shape is not regular in most cases. This work aimed to combine experimental measurements and numerical simulations to reveal the shape factors of the particles of commercialized aerosol drugs and the effect of non-sphericity on the lung deposition distribution of these drugs.
View Article and Find Full Text PDFJ Aerosol Med Pulm Drug Deliv
January 2025
Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
Dry powders offer the potential to increase stability and reduce cold-chain requirements associated with the distribution of vaccines and other thermally sensitive products. The Alberta Idealized Nasal Inlet (AINI) is a representative geometry for characterization of nasal products that may prove useful in examining intranasal delivery of powders. Spray-dried trehalose powders were loaded at 10, 20, and 40 mg doses into active single-dose devices.
View Article and Find Full Text PDFJ Control Release
January 2025
Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France. Electronic address:
Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia. Electronic address:
Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!