Leucine-rich glioma inactivated 1 (Lgi1) is a secreted synaptic protein that organizes a transsynaptic protein complex throughout the brain. Mutations in the Lgi1 gene have been found in patients with autosomal dominant lateral temporal lobe epilepsy (ADLTE). Although a large number of studies have focused on the expression and function of Lgi1 in the postnatal brain, information regarding its functions and distribution during development remains sparse. Here we report that Lgi1 mRNA is preferentially expressed in the caudal ganglionic eminence (CGE) of the early embryonic telencephalon, and LGI1 protein is unexpectedly localized in the nucleus of dissociated CGE neurons. Using bioinformatics analysis, we found that LGI1 contains a putative nuclear localization signal (NLS) in its leucine-rich repeat C-terminal domain. Furthermore, we show that the transient expression of Lgi1 in CGE neurons resulted in nuclear translocation of the LGI1 protein, and a mutation in the NLS led to the retention of LGI1 in the cytoplasm. We also confirmed that the NLS sequence of LGI1 had the ability to mediate the nuclear localization by using the NLS-containing fusion protein. Interestingly, when Lgi1 was expressed in neurons obtained from the medial ganglionic eminence or cerebral cortex, almost no nuclear localization of LGI1 was observed. These results raise the possibility of a novel role of Lgi1 within embryonic neurons through nuclear translocation and may provide insight into its potential effects on the development of the central nervous system and ADLTE pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2012.08129.xDOI Listing

Publication Analysis

Top Keywords

nuclear localization
16
lgi1
14
ganglionic eminence
12
leucine-rich glioma
8
glioma inactivated
8
inactivated lgi1
8
localization signal
8
caudal ganglionic
8
lgi1 protein
8
cge neurons
8

Similar Publications

Nature offers unique examples that help humans produce artificial systems which mimic specific functions of living organisms and provide solutions to complex technical problems of the modern world. For example, the development of 3D micro-nanostructures that mimic nocturnal insect eyes (optimized for night vision), emerges as promising technology for detection in IR spectral region. Here, we report a proof of principle concerning the design and laser 3D printing of all ultrastructural details of nocturnal moth Grapholita Funebrana eyes, for potential use as microlens arrays for IR detection systems.

View Article and Find Full Text PDF

Transcription enhanced associate domain factor 1 (TEAD1) predicts liver regeneration outcome of ALPPS-treated patients.

HPB (Oxford)

December 2024

Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany. Electronic address:

Background: The two-stage surgical technique of associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) enables extensive liver resection and promotes future liver remnant regeneration (FLR), in part by inhibiting the Hippo signalling pathway. Its main effector, Yes-associated protein (YAP), has low intrinsic transcriptional activity and requires the transcription enhanced associated domain factor (TEAD) family members as cofactors for target gene transcription. We evaluated the intracellular localization and expression of TEAD1-4, hypothesized to regulate the activity of YAP and, consequently, liver regeneration.

View Article and Find Full Text PDF

Clinical significance of post-chemoradiotherapy 2-[F]FDG PET/CT response in locally advanced nasopharyngeal carcinoma: A real-world study.

Oral Oncol

February 2025

Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China. Electronic address:

Purpose: To investigate the prognostic value of post-chemoradiotherapy 2-[F]FDG PET/CT in locally advanced nasopharyngeal carcinoma (LANPC) and develop an accurate prognostic model based on the 2-[F]FDG PET/CT results.

Methods: 900 LANPC patients who underwent pretreatment and post-chemoradiotherapy 2-[F]FDG PET/CT from May 2014 to August 2022 were included in the study. We divided the patients into two distinct cohorts for the purpose of our study: a training cohort comprising 506 individuals, included from May 2008 to April 2020, and a validation cohort consisting of 394 individuals, included from May 2020 to August 2022.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance Study of Monoclonal Antibodies Near an Oil-Water Interface.

J Pharm Sci

January 2025

Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:

Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).

View Article and Find Full Text PDF

Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!