A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Calpain 10 homology modeling with CYGAK and increased lipophilicity leads to greater potency and efficacy in cells. | LitMetric

Calpain 10 homology modeling with CYGAK and increased lipophilicity leads to greater potency and efficacy in cells.

ACS Chem Biol

Center for Cell Death, Injury, and Regeneration, Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.

Published: August 2012

Calpain 10 is a ubiquitously expressed mitochondrial and cytosolic Ca(2+)-regulated cysteine protease in which overexpression or knockdown leads to mitochondrial dysfunction and cell death. We previously identified a potent and specific calpain 10 peptide inhibitor (CYGAK), but it was not efficacious in cells. Therefore, we created a homology model using the calpain 10 amino acid sequence and calpain 1 3-D structure and docked CYGAK in the active site. Using this model we modified the inhibitor to improve potency 2-fold (CYGAbuK). To increase cellular efficacy, we created CYGAK-S-phenyl-oleic acid heterodimers. Using renal mitochondrial matrix CYGAK, CYGAK-OC, and CYGAK-ON had IC(50)'s of 70, 90, and 875 nM, respectively. Using isolated whole renal mitochondria CYGAK, CYGAK-OC, and CYGAK-ON had IC(50)'s of 95, 196, and >10,000 nM, respectively. Using renal proximal tubular cells (RPTC) in primary culture, 30 min exposures to CYGAK-OC and CYGAbuK-OC decreased cellular calpain activity approximately 20% at 1 μM, and concentrations up to 100 μM had no additional effect. RPTC treated with 10 μM CYGAK-OC for 24 h induced accumulation of ATP synthase β and NDUFB8, two calpain 10 substrates. In summary, we used molecular modeling to improve the potency of CYGAK, while creating CYGAK-oleic acid heterodimers to improve efficacy in cells. Since calpain 10 has been implicated in type 2 diabetes and renal aging, the use of this inhibitor may contribute to elucidating the role of calpain 10 in these and other diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251666PMC
http://dx.doi.org/10.1021/cb300219hDOI Listing

Publication Analysis

Top Keywords

calpain
9
efficacy cells
8
cells calpain
8
improve potency
8
acid heterodimers
8
cygak cygak-oc
8
cygak-oc cygak-on
8
cygak-on ic50's
8
cygak
6
calpain homology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!