Improved synthesis of C4α- and C4β-methyl analogues of 2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate.

Org Lett

Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.

Published: June 2012

An efficient and divergent synthesis of C4α- and C4β-methyl-substituted analogues of 2-aminobicyclo[3.1.0]hexane 2,6-dicarboxylate, which are important tools in the study of metabotropic glutamate receptor function, has been achieved. By taking advantage of an unanticipated facial selectivity of the bicyclo[3.1.0]hexane ring system, either the C4α- or C4β-methyl substituent was introduced in a highly stereoselective and high-yielding manner.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol300516yDOI Listing

Publication Analysis

Top Keywords

synthesis c4α-
8
c4α- c4β-methyl
8
improved synthesis
4
c4β-methyl analogues
4
analogues 2-aminobicyclo[310]hexane-26-dicarboxylate
4
2-aminobicyclo[310]hexane-26-dicarboxylate efficient
4
efficient divergent
4
divergent synthesis
4
c4α- c4β-methyl-substituted
4
c4β-methyl-substituted analogues
4

Similar Publications

Hydrogels, three-dimensional polymeric networks capable of absorbing and retaining significant amounts of aqueous solution, offer a promising platform for controlled release of desired compounds. In this study, we explored the effects of urea delivery through galactoxyloglucan-sodium alginate hydrogels on the phenotypic and metabolic responses of , a vital oilseed and vegetable crop. The experiments were conducted with four treatments: control (without hydrogel beads and urea), direct urea supplementation (U), hydrogel beads with urea (HBWU), and hydrogel beads without urea (HBWOU).

View Article and Find Full Text PDF

Cathodic Deoxygenative Alkylation of Nitro(hetero)arenes with Organic Halides.

Org Lett

January 2025

School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529090, P. R. China.

We have realized a cathodic deoxygenative alkylation between nitro(hetero)arenes and organic halides, employing bis(pinacolato)diboron (Bpin) and LiCl as additives to trap and stabilize the generated alkyl radicals and carbanions, thereby facilitating efficient N-O cleavage and selective C-N bond formation. The protocol offers an economical method for the efficient synthesis of multiple aromatic(hetero) amines, without the need for reactive reductants and the exclusion of air and moisture. Notably, the protocol is distinguished by scalability, broad functional group compatibility, and safe and mild conditions, demonstrating practicality in the synthesis and late-stage modification of various bioactive compounds.

View Article and Find Full Text PDF

Objective: A new library of Thiazolidine-2,4-dione-biphenyl Derivatives derivatives (10a-j) was designed and synthesized. All compounds were characterized by spectral data. Further, these were evaluated for their in vitro anticancer activity.

View Article and Find Full Text PDF

Background: Acute Lymphoblastic Leukemia (ALL) is the most common type of leukemia among children. There are several types of drugs that are common in treating and controlling leukemia, including 6-M. Moreover, the anti-cancer effects of the Thiosemicarbazone-Ni complex were surveyed as well as 6-MP.

View Article and Find Full Text PDF

Triglyceride (TG) metabolism is a complex and highly coordinated biological process regulated by a series of genes, and its dysregulation can lead to the occurrence of disorders in lipid metabolism. However, the transcriptional regulatory mechanisms of crucial genes in TG metabolism mediated by enhancer-promoter interactions remain elusive. Here, we identified candidate enhancers regulating the Agpat2, Dgat1, Dgat2, Pnpla2, and Lipe genes in 3T3-L1 adipocytes by integrating epigenomic data (H3K27ac, H3K4me1, and DHS-seq) with chromatin three-dimensional interaction data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!