The lattice cluster theory of strongly interacting, structured polymer fluids is applied to determine the thermodynamic properties of solutions of telechelic polymers that may associate through bifunctional end groups. Hence, this model represents a significant albeit natural extension of a diverse array of prior popular equilibrium polymerization models in which structureless "bead" monomers associate into chain-like clusters under equilibrium conditions. In particular, the thermodynamic description of the self-assembly of linear telechelic chains in small molecule solvents (initiated in Paper II) is systematically extended through calculations of the order parameter Φ and average degree
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4714562 | DOI Listing |
Sci Rep
December 2024
School of Physics, IISER Thiruvananthapuram, Vithura, Kerala, 695551, India.
This work reports magnetic field direction dependent second magnetisation peak (SMP) anomaly in single crystals of oxygenated [Formula: see text] for [Formula: see text] ab. Detailed investigations on crystal A revealed the direction dependence of SMP anomaly at temperatures below 25 K, above which the direction dependence vanishes. The state of spatial order of the vortex lattice was found to be correlated to the vortex lattice symmetry that underwent a change at certain fields and was captured via single flux jumps observed in the third and fifth quadrant of magnetisation hysteresis loops.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States.
Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China.
Crystalline membranes, represented by the metal-organic framework (MOF) with well-defined angstrom-sized apertures, have shown great potential for molecular separation. Nevertheless, it remains a challenge to separate small molecules with very similar molecular size differences due to angstrom-scale defects during membrane formation. Herein, a stepwise assembling strategy is reported for constructing MOF membranes with intrinsic angstrom-sized lattice aperture lattice to separate organic azeotropic mixtures separation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
Four fundamental reactions are essential to harnessing energy from water sustainably: oxidation reduction reaction (ORR), oxygen reduction reaction (OER), hydrogen oxidation reaction (HOR), and hydrogen evolution reaction (HER). This review summarizes the research advancements in the electrocatalytic reaction of metal nanoclusters for water splitting. It covers various types of nanoclusters, particularly those at the size level, that enhance these catalytic reactions.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.
The molecular triangular lattice system, β^{'}-EtMe_{3}Sb[Pd(dmit)_{2}]_{2}, is considered as a candidate material for the quantum spin liquid state, although ongoing debates arise from recent controversial results. Here, the results of electron spin resonance and muon-spin relaxation measurements on β^{'}-EtMe_{3}Sb[Pd(dmit)_{2}]_{2} are presented. Both results indicate characteristic behaviors related to quasi-one-dimensional spin dynamics, whereas the direction of anisotropy found in electron spin resonance is in contradiction with previous theories.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!