Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Energy dispersive synchrotron x-ray diffraction is carried out to measure differential lattice strains in polycrystalline Fe(2)SiO(4) (fayalite) and MgO samples using a multi-element solid state detector during high-pressure deformation. The theory of elastic modelling with Reuss (iso-stress) and Voigt (iso-strain) bounds is used to evaluate the aggregate stress and weight parameter, α (0≤α≤1), of the two bounds. Results under the elastic assumption quantitatively demonstrate that a highly stressed sample in high-pressure experiments reasonably approximates to an iso-stress state. However, when the sample is plastically deformed, the Reuss and Voigt bounds are no longer valid (α becomes beyond 1). Instead, if plastic slip systems of the sample are known (e.g. in the case of MgO), the aggregate property can be modelled using a visco-plastic self-consistent theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/18/25/S11 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!