Aggregated amyloid peptides (AP), major components of senile plaques, have been considered to play a very important and crucial role in the development and neuro-pathogenesis of Alzheimer's disease (AD). In the present in vitro, study the synergistic effects of Pb(2+), a heavy metal, and AP on the human neuroblastoma SH-SY5Y cells were investigated. The cells treated with Pb(2+) (0.01-10 μM) alone exhibited a significant decrease in viability and IC(50) was 5 μM. A similar decrease in viability was also observed when the cells were exposed to AP, Aβ1-40 (20-120 μM) and Aβ25-35 (2.5-15 μM) for 48 hrs. The IC(50) values were 60 μM and 7.5 μM for Aβ1-40 and Aβ25-35 respectively. To assess the synergistic effects the cells were exposed to IC(50) of both AP and Pb(2+), which resulted in further reduction of the viability. The study was extended to determine the lactate dehydrogenase (LDH) release to assess the cytotoxic effects, 8-isoprostane for extent of oxidative damage, COX 1 and 2 for inflammation related changes, p53 protein for DNA damage and protein kinases A and C for signal transduction. The data suggest that the toxic effects of AP were most potent in the presence of Pb(2+), resulting in an aggravated clinical pathological condition. This could be attributed to the oxidative stress, inflammation neuronal apoptosis and an alteration in the activities of the signaling enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839229 | PMC |
http://dx.doi.org/10.2478/s11658-012-0018-3 | DOI Listing |
Eur J Med Res
January 2025
Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany.
Liquid biomarkers are essential in trauma cases and critical care and offer valuable insights into the extent of injury, prognostic predictions, and treatment guidance. They can help assess the severity of organ damage (OD), assist in treatment decisions and forecast patient outcomes. Notably, small extracellular vesicles, particularly those involved in splenic trauma, have been overlooked.
View Article and Find Full Text PDFChin Med
January 2025
Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
Background: With extended gefitinib treatment, the therapeutic effect in some non-small cell lung cancer (NSCLC) patients declined with the development of drug resistance. Aidi injection (ADI) is utilized in various cancers as a traditional Chinese medicine prescription. This study explores the molecular mechanism by which ADI, when combined with gefitinib, attenuates gefitinib resistance in PC9GR NSCLC cells.
View Article and Find Full Text PDFNat Mater
January 2025
Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
High thermoelectric performance is generally achieved by synergistically optimizing two or even three of the contradictorily coupled thermoelectric parameters. Here we demonstrate magneto-thermoelectric correlation as a strategy to achieve simultaneous gain in an enhanced Seebeck coefficient and reduced thermal conductivity in topological materials. We report a large magneto-Seebeck effect and high magneto-thermoelectric figure of merit of 1.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).
View Article and Find Full Text PDFSci Rep
January 2025
Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
Humans exploit motor synergies for motor control; however, how they emerge during motor learning is not clearly understood. Few studies have dealt with the computational mechanism for generating synergies. Previously, optimal control generated synergistic motion for the upper limb; however, it has not yet been applied to the high-dimensional whole-body system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!