Synergistic effects of amyloid peptides and lead on human neuroblastoma cells.

Cell Mol Biol Lett

Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA.

Published: September 2012

Aggregated amyloid peptides (AP), major components of senile plaques, have been considered to play a very important and crucial role in the development and neuro-pathogenesis of Alzheimer's disease (AD). In the present in vitro, study the synergistic effects of Pb(2+), a heavy metal, and AP on the human neuroblastoma SH-SY5Y cells were investigated. The cells treated with Pb(2+) (0.01-10 μM) alone exhibited a significant decrease in viability and IC(50) was 5 μM. A similar decrease in viability was also observed when the cells were exposed to AP, Aβ1-40 (20-120 μM) and Aβ25-35 (2.5-15 μM) for 48 hrs. The IC(50) values were 60 μM and 7.5 μM for Aβ1-40 and Aβ25-35 respectively. To assess the synergistic effects the cells were exposed to IC(50) of both AP and Pb(2+), which resulted in further reduction of the viability. The study was extended to determine the lactate dehydrogenase (LDH) release to assess the cytotoxic effects, 8-isoprostane for extent of oxidative damage, COX 1 and 2 for inflammation related changes, p53 protein for DNA damage and protein kinases A and C for signal transduction. The data suggest that the toxic effects of AP were most potent in the presence of Pb(2+), resulting in an aggravated clinical pathological condition. This could be attributed to the oxidative stress, inflammation neuronal apoptosis and an alteration in the activities of the signaling enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839229PMC
http://dx.doi.org/10.2478/s11658-012-0018-3DOI Listing

Publication Analysis

Top Keywords

synergistic effects
12
amyloid peptides
8
human neuroblastoma
8
decrease viability
8
cells exposed
8
μm
6
cells
5
effects amyloid
4
peptides lead
4
lead human
4

Similar Publications

Liquid biomarkers are essential in trauma cases and critical care and offer valuable insights into the extent of injury, prognostic predictions, and treatment guidance. They can help assess the severity of organ damage (OD), assist in treatment decisions and forecast patient outcomes. Notably, small extracellular vesicles, particularly those involved in splenic trauma, have been overlooked.

View Article and Find Full Text PDF

Background: With extended gefitinib treatment, the therapeutic effect in some non-small cell lung cancer (NSCLC) patients declined with the development of drug resistance. Aidi injection (ADI) is utilized in various cancers as a traditional Chinese medicine prescription. This study explores the molecular mechanism by which ADI, when combined with gefitinib, attenuates gefitinib resistance in PC9GR NSCLC cells.

View Article and Find Full Text PDF

High thermoelectric performance is generally achieved by synergistically optimizing two or even three of the contradictorily coupled thermoelectric parameters. Here we demonstrate magneto-thermoelectric correlation as a strategy to achieve simultaneous gain in an enhanced Seebeck coefficient and reduced thermal conductivity in topological materials. We report a large magneto-Seebeck effect and high magneto-thermoelectric figure of merit of 1.

View Article and Find Full Text PDF

Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).

View Article and Find Full Text PDF

Motor synergy and energy efficiency emerge in whole-body locomotion learning.

Sci Rep

January 2025

Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.

Humans exploit motor synergies for motor control; however, how they emerge during motor learning is not clearly understood. Few studies have dealt with the computational mechanism for generating synergies. Previously, optimal control generated synergistic motion for the upper limb; however, it has not yet been applied to the high-dimensional whole-body system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!