As actual stem cell application quickly approaches tissue engineering and regenerative medicine, aspects such as cell attachment to scaffolds and biomaterials become important and are often overlooked. Here, we compare the effects of several attachment proteins on the adhesion, proliferation and stem cell identity of three promising human stem cell types: human adipose-derived stem cells (hASCs), human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Traditional tissue culture polystyrene plates (TCPS), Matrigel (Mat), laminin (Lam), fibronectin (FN) and poly-L-lysine (PLL) were investigated as attachment protein surfaces. For hASCs typically cultured on TCPS, laminin resulted in the greatest cell attachment and proliferation with largest cell areas, indicating favourability by cell spreading. However, mesenchymal stem cell markers indicative of hASCs were slightly more expressed on surfaces with lowest cell attachment, corresponding to increased cell roundness, a newly observed attribute in hASCs possibly indicating a more stem cell-like character. hESCs preferred Matrigel as a feeder-free culture surface. Interestingly, hiPSCs favoured laminin over Matrigel for colony expansion, shown by larger cell colony area and perimeter lengths, although cell numbers and stem cell marker expression level remained highest on Matrigel. These data provide a practical reference guide for selecting a suitable attachment method for using human induced pluripotent, embryonic or adipose stem cells in tissue engineering and regenerative medicine applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086291 | PMC |
http://dx.doi.org/10.1002/term.1499 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!