Visualization of the interactome: what are we looking at?

Proteomics

New South Wales Systems Biology Initiative, and School of Biotechnology and Biomolecular Sciences, The University of New South Wales, New South Wales, Australia.

Published: May 2012

Network visualization of the interactome has been become routine in systems biology research. Not only does it serve as an illustration on the cellular organization of protein-protein interactions, it also serves as a biological context for gaining insights from high-throughput data. However, the challenges to produce an effective visualization have been great owing to the fact that the scale, biological context and dynamics of any given interactome are too large and complex to be captured by a single visualization. Visualization design therefore requires a pragmatic trade-off between capturing biological concept and being comprehensible. In this review, we focus on the biological interpretation of different network visualizations. We will draw on examples predominantly from our experiences but elaborate them in the context of the broader field. A rich variety of networks will be introduced including interactomes and the complexome in 2D, interactomes in 2.5D and 3D and dynamic networks.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.201100454DOI Listing

Publication Analysis

Top Keywords

visualization interactome
8
biological context
8
visualization
5
interactome at?
4
at? network
4
network visualization
4
interactome routine
4
routine systems
4
systems biology
4
biology serve
4

Similar Publications

Amyloid-β oligomers increase the binding and internalization of tau oligomers in human synapses.

Acta Neuropathol

December 2024

Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.

In Alzheimer's disease (AD), the propagation and spreading of CNS tau pathology closely correlates with cognitive decline, positioning tau as an attractive therapeutic target. Amyloid beta (Aβ) has been strongly implicated in driving tau spread, whereas primary tauopathies such as primary age-related tauopathy (PART)-which lack Aβ pathology-exhibit limited tau spread and minimal-to-no cognitive decline. Emerging evidence converges on a trans-synaptic mechanism of tau spread, facilitated by the transfer of misfolded tau aggregates (e.

View Article and Find Full Text PDF

Unlabelled: We report here transport of the Epidermal Growth Factor Receptor (EGFR), Insulin Receptor, 7-pass transmembrane receptor Smoothened, and 13-pass Sodium-iodide symporter to extracellular vesicles (EVs) for structural and functional studies. Mass spectrometry confirmed the transported proteins as the most abundant in EV membranes, and the presence of many receptor-interacting proteins demonstrates the utility of EVs for characterizing membrane protein interactomes. Cryo-electron tomography of EGFR-containing EVs reveals that EGFR forms clusters in the presence of EGF with a ∼3 nm gap between the inner membrane and cytoplasmic density.

View Article and Find Full Text PDF

An Intrinsically Disordered RNA Binding Protein Modulates mRNA Translation and Storage.

J Mol Biol

November 2024

Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States. Electronic address:

Proteins with intrinsically disordered regions (IDR) play diverse functions in regulating gene expression in the cell. Many of these proteins interact with cytoplasmic ribosomes. However, the molecular functions related to the interactions are largely unclear.

View Article and Find Full Text PDF

Eukaryotic nuclei adopt a highly compartmentalized architecture that influences nearly all genomic processes. Understanding how this architecture impacts gene expression has been hindered by a lack of tools for elucidating the molecular interactions at individual genomic loci. Here, we adapt oligonucleotide-mediated proximity-interactome mapping (O-MAP) to biochemically characterize discrete, micron-scale nuclear neighborhoods.

View Article and Find Full Text PDF

Mass spectrometry-based proteomics to study mutants and interactomes of mitochondrial translocation proteins.

Methods Enzymol

November 2024

Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany. Electronic address:

The multiple functions of mitochondria are governed by their proteome comprising 1000-1500 proteins depending on the organism. However, only few proteins are synthesized inside mitochondria, whereas most are "born" outside mitochondria. To reach their destined location, these mitochondrial proteins follow specific import routes established by a mitochondrial translocase network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!