Amylolytic lactic acid bacteria (ALAB) can potentially replace malt in reducing the viscosity of starchy porridges. However, the drawback of using ALAB is their low and delayed amylolytic activity. This necessitates searching for efficient ALAB and strategies to improve their amylolytic activity. Two ALAB, Lactobacillus plantarum MNC 21 and Lactococcus lactis MNC 24, isolated from Obushera, were used to ferment starches in MRS broth: sorghum, millet, sweet potato, and commercial soluble starch. The amylolytic activity of MNC 21 was comparable to that of the ALAB collection strain Lb. plantarum A6, while that of MNC 24 was extremely low. MNC 21, MNC 24, and their coculture were compared to A6 and sorghum malt for ability to ferment and reduce the viscosity of sorghum porridge (11.6% dry matter). ALAB and the coculture lowered the pH from 6.2 to <4.5 within 12 h, while malt as a carrier of wild starter took about 20 h. Coculturing increased lactic acid yield by 46% and 76.8% compared to the yields of MNC 21 and MNC 24 monocultures, respectively. The coculture accumulated significantly larger (P < 0.05) amounts of maltose and diacetyl than the monocultures. Sorghum malt control and the coculture hydrolyzed more starch in sorghum porridge than the monocultures. The coculture initiated changes in the rheological parameters storage modulus (G'), loss modulus (G″), phase angle (δ), and complex viscosity (η*) earlier than its constituent monocultures. The shear viscosity of sorghum porridge was reduced significantly (P < 0.05) from 1950 cP to 110 cP (malt), 281 cP (coculture), 382 cP (MNC 21), 713 cP (MNC 24), and 722 cP (A6). Coculturing strong ALAB with weak ALAB or non-ALAB can be exploited for preparation of nutrient-dense weaning foods and increasing lactic acid yield from starchy materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416399 | PMC |
http://dx.doi.org/10.1128/AEM.00857-12 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
The amylolytic susceptibility of starch-lipid complexes with different forms of crystallites has been studied extensively, but the fermentation properties of these complexes remain little understood. Hence, the fecal fermentation properties of starch-lipid complexes with V-type and V-type crystallites were investigated in the present study. Compared to V-type complexes, fermentation of V-type complexes caused more severe disruption to the crystallites and resulted in greater acid, reducing sugar, and short-chain fatty acids (SCFAs) production.
View Article and Find Full Text PDFEnviron Monit Assess
October 2024
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Oblast, Nekouzskii Raion, 152742, Russia.
Aquatic ecosystems are increasingly affected by anthropogenic pollution, including heavy metals like mercury, which accumulate in organisms and cause harmful effects. At the same time, human activities such as industrial operations and the use of electric power lines also alter the magnetic background in natural water bodies. However, the interaction between mercury exposure and magnetic fields remains poorly understood.
View Article and Find Full Text PDFJ Sci Food Agric
February 2025
Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia.
Background: To remain competitive, brewers must innovate by incorporating novel elements beyond traditional styles. Thus, exploring triticale as a modern substitute for barley malt is promising, especially given its higher amylolytic activity compared to barley. This study aimed to assess the impact of substituting up to 50% of barley malt with unmalted triticale on green beer quality, encompassing multiple stages from wort production to primary fermentation at a laboratory scale.
View Article and Find Full Text PDFJ Dairy Res
October 2024
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
World J Microbiol Biotechnol
October 2024
Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, Verona, 37134, Italy.
This study analysed basidiomycetous yeasts isolated from the phylloplane of crops and spontaneous plants in Italian agroecosystems. A total of 25 species belonging to 17 genera were recognized by analysing 83 isolates from vineyards and orchards, that are not treated with synthetic fungicides, and adjacent natural areas. Rhodotorula graminis and Filobasidium magnum were the most frequent species but 13 others were represented by a single isolate (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!