Epidemiological games combine epidemic modelling with game theory to assess strategic choices in response to risks from infectious diseases. In most epidemiological games studied thus-far, the strategies of an individual are represented with a single choice parameter. There are many natural situations where strategies can not be represented by a single dimension, including situations where individuals can change their behavior as they age. To better understand how age-dependent variations in behavior can help individuals deal with infection risks, we study an epidemiological game in an SI model with two life-history stages where social distancing behaviors that reduce exposure rates are age-dependent. When considering a special case of the general model, we show that there is a unique Nash equilibrium when the infection pressure is a monotone function of aggregate exposure rates, but non-monotone effects can appear even in our special case. The non-monotone effects sometimes result in three Nash equilibria, two of which have local invasion potential simultaneously. Returning to a general case, we also describe a game with continuous age-structure using partial-differential equations, numerically identify some Nash equilibria, and conjecture about uniqueness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690432 | PMC |
http://dx.doi.org/10.1007/s00285-012-0543-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!